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Before we get through into the algorithm of simplex we show how to convert on LPP to the standard 
form. 

To convert LPP into standard form, each inequality constraint must be replaced by an equality 
constraint. Here, for the “less than or equal” constraint we add a new variable that is called a slack 
variable. 

Slack variable:

Is denoted by 𝑠𝑖 for the constraint 𝑖𝑡ℎ and represents the unused amount of the resource in this 
constraint.

For example, the constraint 𝑥1 + 𝑥2 ≤ 40 is converted into

𝑥1 + 𝑥2 + 𝑠1 = 40,  𝑠1 ≥ 0
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Excess variable: 

Sometimes it is called surplus variable and is denoted by 𝑒𝑖 for the “greater than or equal” 
constraints. 

For example, the constraint 𝑥1 + 𝑥2 ≥ 40 is converted into

𝑥1 + 𝑥2 − 𝑒1 = 40,  𝑒1 ≥ 0

  

Basic and Non-basic variables: 

Consider a system 𝐴𝑥 = 𝑏 of 𝑚 linear equations and 𝑛 variables. Assuming 𝑛 ≥ 𝑚 then a basic 
solution to 𝐴𝑥 = 𝑏 is obtained by setting 𝑛 − 𝑚 variables equal to zero and solving for the 
values of the remaining 𝑚 variables.

In this case, we set the non-basic variables (or NBV) equal to zero. Therefore, the other 
remaining variables are called basic variables.
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Example 1
Find the basic solution for the system

ൠ
𝑥1 + 𝑥2 = 3 

−𝑥2 + 𝑥3 = −1 
⇒ 𝑚 = 2 and 𝑛 = 3

So we have 𝑛 − 𝑚 = 3 − 2 = 1 non-basic variables equal to zero. 

Let 𝑥3 = 0 ⇒ 𝑥2 = 1 and 𝑥1 = 2.

Then the basic solution = (2,1,0)

Note: some set of 𝑚 variables do not give a basic solution. 
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Example 2
ൠ

𝑥1 + 2𝑥2 + 𝑥3 = 1 
2𝑥1 + 4𝑥2 + 𝑥3 = 3

⇒ 𝑚 = 2 and 𝑛 = 3

Then the non-basic variables = 1. 

Let 𝑥3 = 0 ⇒ ൠ
𝑥1 + 2𝑥2 = 1 
2𝑥1 + 4𝑥2 = 3

⇒△=
1 2
2 4

= 0, △𝑥1
=

1 2
3 4

= −2 ≠ 0, 𝑥1 =
−2

0

Then the system has no basic solution if we set 𝑥3 = 0. 

Now, let 𝑥2 = 0 ⇒ ൠ
𝑥1 + 𝑥3 = 1 
2𝑥1 + 𝑥3 = 3

⇒△=
1 1
2 1

= 1 − 2 = −1

 △𝑥1
=

1 1
3 1

= 1 − 3 = −2, △𝑥3
=

1 1
2 3

= 3 − 2 = 1

𝑥1 =
−2

−1
= 2, 𝑥3 =

1

−1
= −1 ⇒The basic solution = (2,0, −1). 
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Feasible Basic solution: 

A basic solution is called feasible basic solution if all its variable are non-negative (≥ 0)

For example, the solution (2,1,0) is feasible basic solution while the solution (2,0, −1) fails to 
be feasible. 

Note: For a LPP in the standard form with 𝑛 variable and 𝑚 equality constraints a set of 𝑛 − 𝑚 
non-basic variables (or equivalently, 𝑚 basic variables) can be chosen as follows

𝑛
𝑚

=
𝑛!

𝑚! 𝑛−𝑚 !
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Example 3
Find the basic solutions for the following

𝑥1 + 2𝑥2 ≤ 6 
2𝑥1 + 𝑥2 ≤ 8 

𝑥1, 𝑥2 ≥ 0

Solution: Convert to the standard form as follows

ቑ

𝑥1 + 2𝑥2 + 𝑠1 = 6 (∗) 
2𝑥1 + 𝑥2 + 𝑠2 = 8 (∗∗)

𝑥1, 𝑥2, 𝑠1, 𝑠2 ≥ 0
⇒ 𝑚 = 2 and 𝑛 = 4

Then the non-basic variables = 𝑛 − 𝑚 = 2. 

The chosen set of non-basic variables 
𝑛
𝑚

=
4
2

=
4!

2! 4−2 !
= 6.
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How can we evaluate?

𝑠1 = 0 

1  𝑠2 = 0

2  𝑥1 = 0

3  𝑥2 = 0

 ,     𝑠2 = 0 
4  𝑥1 = 0

5  𝑥2 = 0
 ,     𝑥1 = 0 6  𝑥2 = 0

Then the set is ⇒

Case (1) ⇒ The non-basic variables are 𝑠1 = 0, 𝑠2 = 0 ⇒ 𝑥1 = 3.33, 𝑥2 = 1.33.

⇒ The solution = 3.33, 1.33,0,0 . Feasible basic solution. 

Remain variablesRemain variables Remain variables
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Case (2) ⇒ 𝑠1 = 0, 𝑥1 = 0 ⇒ 𝑥2 = 3, 𝑠2 = 5.

⇒ (0, 3,0,5). Feasible basic solution. 

Case (3) ⇒ 𝑠1 = 0, 𝑥2 = 0 ⇒ 𝑥1 = 6, 𝑠2 = −4.

⇒ 6, 0,0, −4 . Non-feasible 𝑠2< 0. 

Case (4) ⇒ 𝑠2 = 0, 𝑥1 = 0 ⇒ 𝑥2 = 8, 𝑠1 = −10.

⇒ 0, 8, −10,0 . Non-feasible 𝑠1< 0. 

Case (5) ⇒ 𝑠2 = 0, 𝑥2 = 0 ⇒ 𝑥1 = 4, 𝑠1 = 2.

⇒ 4, 0,2,0 . Feasible basic solution. 

Case (6) ⇒ 𝑥1 = 0, 𝑥2 = 0 ⇒ 𝑠1 = 6, 𝑠2 = 8.

⇒ 0, 0,6,8 . Feasible basic solution. 
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Therefore, the above results can be summarized as follows:

Case Non-basic 
variables

Basic 
variables

Solution FBS NF

(1) 𝑠1, 𝑠2 𝑥1, 𝑥2 3.33, 1.33,0,0 √

(2) 𝑠1, 𝑥1 𝑠2, 𝑥2 (0, 3,0,5) √

(3) 𝑠1, 𝑥2 𝑠2, 𝑥1 (6, 0,0, −4) √

(4) 𝑠2, 𝑥1 𝑠1, 𝑥2 (0, 8, −10,0) √

(5) 𝑠2, 𝑥2 𝑠1, 𝑥1 (4, 0,2,0) √

(6) 𝑥1, 𝑥2 𝑠1, 𝑠2 (0, 0,6,8) √
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Simplex algorithm for Max problem:

Step 1: Convert the LPP to standard form. 

Step 2: Find a basic feasible solution. For the constraints " ≤ “ with non-negative 
right-hand sides, we can use the slack variables 𝑠𝑖  as the basic variables.

Step 3: If the non-basic variables in row 0 have non-negative coefficients, then 
the current basic feasible solution is optimal . If any variable have negative 
coefficient in row 0, choose the variable with the most negative coefficient in 
row 0 to enter the basic. We call this variable the entering variable. 

Step 4: use elementary row operations to make the entering variable the basic 
variable in any row that wins the ratio test. After the elementary row operations 
have been used to create a new canonical form, return to step 3. 

We use the following example to apply the simplex algorithm. 
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Example 4 
Max 𝑍 = 10𝑥1 + 6𝑥2 + 4𝑥3 

 Subject to ቐ

𝑥1 + 𝑥2 + 𝑥3 ≤ 100 
10𝑥1 + 4𝑥2 + 5𝑥3 ≤ 600
2𝑥1 + 2𝑥2 + 6𝑥3 ≤ 300

 

𝑥1, 𝑥2, 𝑥3 ≥ 0
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Solution

The standard form,
𝑥1 + 𝑥2 + 𝑥3 + 𝑠1 + 𝑠2 + 𝑠3 = 100

10𝑥1 + 4𝑥2 + 5𝑥3 + 𝑠1 + 𝑠2 + 𝑠3 = 600
2𝑥1 + 2𝑥2 + 6𝑥3 + 𝑠1 + 𝑠2 + 𝑠3 = 300

and 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2, 𝑠3 ≥ 0

Then the standard form become, 
Max 𝑍 = 10𝑥1 + 6𝑥2 + 4𝑥3 + 0 ∙ 𝑠1 +0 ∙ 𝑠2 + 0 ∙ 𝑠3

Subject to ቐ

𝑥1 + 𝑥2 + 𝑥3 + 𝑠1 = 100 
10𝑥1 + 4𝑥2 + 5𝑥3 + 𝑠2 = 600
2𝑥1 + 2𝑥2 + 6𝑥3 + 𝑠3 = 300

 

𝑥𝑖 , 𝑠𝑖 ≥ 0 , 𝑖 = 1,2,3. 
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To build the initial table, we should write the objective function, and the constraints as follows:

Max 𝑍 

s.t. 
𝑍 − 10𝑥1 − 6𝑥2 − 4𝑥3 = 0
𝑥1 + 𝑥2 + 𝑥3 + 𝑠1 = 100

10𝑥1 + 4𝑥2 + 5𝑥3 + 𝑠2 = 600
2𝑥1 + 2𝑥2 + 6𝑥3 + 𝑠3 = 300

 𝑥1, 𝑥2, 𝑥3, 𝑠1, 𝑠2, 𝑠3 ≥ 0
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS

Z -10 -6 -4 0 0 0 0

𝒔1 1 1 1 1 0 0 100

𝒔2 10 4 5 0 1 0 600

𝒔3 2 2 6 0 0 1 300

The initial table
Basic variable

𝑅0: Objective function row

𝑅1: 1st constraint row

𝑅2: 2nd constraint row

𝑅3: 3rd constraint row

Right hand side
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The current feasible basic solution is: 0,0,0,100,600,300  and z = 0.

But this solution is not optimal since row 0 contains negative variables. 

So, one of the NBV will enter to be BV and one of the BV will leave.

▪The entry NBV is the most negative (when objective is max). 

▪The entry NBV is the most positive (when objective is min).

▪The Leaving BV is the one that has a smaller ratio test. 

▪The intersection of the entry variable and the leaving is called the pivotal element. 
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS RT

Z -10 -6 -4 0 0 0 0

𝒔1 1 1 1 1 0 0 100 100

𝒔2 10 4 5 0 1 0 600 60

𝒔3 2 2 6 0 0 1 300 150

Entry variable

Leaving variable

Ratio test = RHS/coefficient 
of entry variable

Minimum RT

Pivotal element
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS

Z

𝒔1

𝒙1

𝒔3

1 0.4 0.5 0 0.1 0 60

The new 𝑅2 = old 𝑅2 ÷ 10

▪ The pivotal element must be equal to 1. 
▪ Each cell above and under the pivotal element must be equal to 0. 

÷ 10
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS

Z 0 -2 1 0 1 0 600

𝒔1 0 0.6 0.5 1 -0.1 0 40

𝒙1 1 0.4 0.5 0 0.1 0 60

𝒔3 0 1.2 5 0 -0.2 1 180

The new 𝑅0 = (10 × new 𝑅2) + 𝑜𝑙𝑑 𝑅0

The new 𝑅1 = (−1 × new 𝑅2) + 𝑜𝑙𝑑 𝑅1

The new 𝑅3 = (−2 × new 𝑅2) + 𝑜𝑙𝑑 𝑅3

The current feasible basic solution is: (60, 0, 0, 40, 0, 180) and z = 600.
But this solution is not optimal since row 0 contains negative variables.
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS RT

Z 0 -2 1 0 1 0 600

𝒔1 0 0.6 0.5 1 -0.1 0 40 40/0.6= 66.67

𝒙1 1 0.4 0.5 0 0.1 0 60 60/0.4 = 150

𝒔3 0 1.2 5 0 -0.2 1 180 180/1.2 = 150

The new 𝑅1 = 𝑜𝑙𝑑𝑅1 ÷ 0.6

leaving variable

entry variable

Minimum RT

Pivotal element
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BV 𝑥1 𝑥𝟐 𝑥𝟑 𝒔1 𝒔𝟐 𝒔𝟑 RHS

Z 0 0 16/6 20/6 4/6 0 2200/3

𝒙2 0 1 5/6 10/6 -1/6 0 400/6

𝒙1 1 0 1/6 -2/3 1/6 0 100/3

𝒔3 0 0 4 -2 0 1 100

The new 𝑅0 = (2 × new 𝑅1) + 𝑜𝑙𝑑 𝑅0

The new 𝑅2 = (−0.4 × new 𝑅1) + 𝑜𝑙𝑑 𝑅2

The new 𝑅3 = (−1.2 × new 𝑅1) + 𝑜𝑙𝑑 𝑅3

The current feasible basic solution is: (100/3, 400/6, 0, 0, 0, 100) and
 z = 2200/3 ≈ 733.33.
This solution is optimal since row 0 does not contain negative variables.

21



▪ In row 0 in ALL simplex table, the coefficient of BV is equal to 0.

▪ In row 0 in FINAL simplex table, for the optimal solution:

➢ If the values of all NBV are greater than zero, then we have a single (unique) optimal solution.

➢If there is a NB variable equal to zero, then we have multiple optimal basic solutions. When 
wanting to find an alternative optimal solution, one of the NB variables whose value is equal to 
zero is chosen to become BV.

▪ When it is not possible to perform the minimum ratio test for all rows, i.e. there is no positive 
value (greater than zero) in the column of the entry variable. We conclude that the optimal 
solution is infinite (unbounded), that is, 𝑧∗ = +∞ when the objective function is max, and 𝑧∗ =
− ∞ when the objective function is min.
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Example 5
Use the simplex method to solve the following LPP:

Min 𝑍 = 2𝑥1 − 3𝑥2

 Subject to ቊ
𝑥1 + 𝑥2 ≤ 4 
𝑥1 − 𝑥2 ≤ 6

 

𝑥1, 𝑥2 ≥ 0
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Solution

The standard form,
𝑥1 + 𝑥2 + 𝑠1 = 4
𝑥1 − 𝑥2 + 𝑠2 = 6

Min 𝑍 = 2𝑥1 − 3𝑥2

                   Subject to ቊ
𝑥1 + 𝑥2 + 𝑠1 = 4 
𝑥1 − 𝑥2 + 𝑠2 = 6

 

             𝑥𝑖 , 𝑠𝑖 ≥ 0 , 𝑖 = 1,2. 

24



BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 -2 3 0 0 0

𝒔1 0 1 1 1 0 4 4/1= 4

𝒔2 0 1 -1 0 1 6 -

The initial basic feasible solution is 𝑥1 = 0, 𝑥2 = 0, 𝑠1 = 4, 𝑠2 = 6.

BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS

Z 1 -5 0 -3 0 -12

𝒙2 0 1 1 1 0 4

𝒔2 0 2 0 1 1 10

It is clear in the last table that all the coefficients for NBV in row 0 are non-positive then the 
optimum solution is 𝑥1 = 0, 𝑥2 = 4, 𝑠1 = 0, 𝑠2 = 10, and . Min 𝑧 = −12. 

Note: The above example “Min” can be solved using the rotation Min 𝑧 = −Max(−𝑧). 
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Example 6
Solve using the simplex approach. (This example has multiple optimum solution).

Max 𝑍 = −3𝑥1 + 6𝑥2

 Subject to ቊ
5𝑥1 + 7𝑥2 ≤ 35 

−𝑥1 + 2𝑥2 ≤ 2
 

𝑥1, 𝑥2 ≥ 0
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Solution
The standard form,

Max 𝑍 = −3𝑥1 + 6𝑥2

 Subject to ቊ
5𝑥1 + 7𝑥2 + 𝑠1 = 35 

−𝑥1 + 2𝑥2 + 𝑠2 = 2
 

                 𝑥𝑖 , 𝑠𝑖 ≥ 0 , 𝑖 = 1,2.  
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BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 3 -6 0 0 0

𝒔1 0 5 7 1 0 35 35/7= 5

𝒔2 0 -1 2 0 1 2 2/2= 1

The initial basic feasible solution is 𝑥1 = 0, 𝑥2 = 0, 𝑠1 = 35, 𝑠2 = 2.

BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS

Z 1 0 0 0 3 6

𝒔1 0 17/2 0 1 -7/2 28

𝒙2 0 -1/2 1 0 1/2 1

From the last table we have all the coefficients of row 0 are non-negative then Max 𝑧 = 6 and 
(0,1,28,0) is the optimum solution.  
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Note: Since 𝑥1is NBV and its coefficient in row 0 is equal to 0, so we have multiple solutions. 
Another optimum solution with Max 𝑧 = 6 can be obtained by assuming 𝑥1 as an entry variable 
and find RT of BV to find the leaving one and complete as before. 

So we have (
56

17
,

45

17
, 0,0) gives Max 𝑧 = 6 . 
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Note: Another optimum solution that gives Max 𝑧 = 6 can be obtained by averaging the two 

solutions that we got 𝑥1 = 0, 𝑥2 = 1  and (𝑥1 =
56

17
, 𝑥2 =

45

17
).

The average solution ⇒

𝑥1 =
0 +

56
17

2
=

28

17

𝑥2 =
1 +

45
17

2
=

31

17

The other optimum solution is 
28

17
,

31

17
gives Max 𝑧 = 6. 
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Example 7
Show that the following example has unbonded solution using the simplex approach:

Max 𝑍 = 2𝑥2

 Subject to ቊ
𝑥1 − 𝑥2 ≤ 4 
−𝑥1 + 𝑥2 ≤ 1

 

𝑥1, 𝑥2 ≥ 0

The standard form,
Max 𝑍 = 2𝑥2

 Subject to ቊ
𝑥1 − 𝑥2 + 𝑠1 = 4 
−𝑥1 + 𝑥2 + 𝑠2 = 1

 

                 𝑥𝑖 , 𝑠𝑖 ≥ 0 , 𝑖 = 1,2.  
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BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 0 -2 0 0 0

𝒔1 0 1 -1 1 0 4 -

𝒔2 0 -1 1 0 1 1 1

The initial feasible solution is 𝑠1 = 4, 𝑠2 = 1.

BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 -2 0 0 2 2

𝒔1 0 0 0 1 1 5 -

𝒙2 0 -1 1 0 1 1 -

From the last table we have coefficient below -2 is less than or equal to zero then we can’t 
compute the RT then we have unbounded solution.  
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Example 8
Solve the following LPP using the simplex approach:

M𝑖𝑛 𝑍 = −2𝑥1 − 3𝑥2

 Subject to ቊ
𝑥1 − 𝑥2 ≤ 1 
𝑥1 − 2𝑥2 ≥ 2

 

𝑥1, 𝑥2 ≥ 0
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BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 2 3 0 0 0

𝒔1 0 1 -1 1 0 1 -

𝒔3 0 1 -2 0 1 2 -

The initial basic feasible solution is 𝑠1 = 1, 𝑠2 = 2.

From the above table, we have an unbounded solution.

Degenerate LLP: 
A LPP is called degenerate if it has at least one basic feasible solution in which a basic 
variable is equal to zero. 

34



Example 9
Show that the following LPP is degenerate:

Max 𝑍 = 5𝑥1 + 2𝑥2

 Subject to ቊ
𝑥1 + 𝑥2 ≤ 6 
𝑥1 − 𝑥2 ≤ 0

 

𝑥1, 𝑥2 ≥ 0
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BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 -5 -2 0 0 0

𝒔1 0 1 1 1 0 6 6/1=6

𝒔2 0 1 -1 0 1 0 0/1=0 

The initial basic feasible solution is 𝑥1 = 0, 𝑥2 = 0 non − basic variable .
𝑠1 = 6, 𝑠2 = 0 (basic variable) ⟹(Degenerate LPP since 𝑠2 is BV = 0 )

BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS RT

Z 1 0 -7 0 5 0

𝒔1 0 0 2 1 -1 6 6/2=3

𝒙1 0 1 -1 0 1 0 - 

minimum

negative
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BV z 𝑥1 𝑥𝟐 𝒔1 𝒔𝟐 RHS

Z 1 0 0 3.5 1.5 21

𝒙2 0 0 1 1/2 -1/2 3

𝒙1 0 1 0 1/2 1/2 3

From the last table, we get all the coefficients in row 0 are positive then 
the optimum solution is 𝑥1 = 3, 𝑥2 = 3, 𝑠1 = 0, 𝑠2 = 0 and Max 𝑧 = 21. 
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From the previous example we get,

▪ From the initial table we have the wining ratio = 0. This means that after 𝑥1 enters the basic, 
𝑥1will be zero in the new basic feasible solution (in table1).

▪ The new feasible solution with 𝑥1 = 0 will have 𝑧 = 0 as the old one (table 0).  
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