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Definition 1:

Linear programming is a mathematical technique for detecting an optimum solution of certain 
real problems. 

➢ Real-life problems includes:

1) Transportation problems

2) Assignment problem

3) Network problem

4) Decision theory-based problems

5) Game theory-based problems. …, etc. 

6) Inventory, …, etc. 
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➢ Basic Requirements:

a) Decision Variables is denoted by 𝑥1, 𝑥2, … , 𝑥𝑛.
▪ They represent activity such as production, quantity. 

▪ Through the chapter of linear programing these variables restricted by the non-negative inequalities given 

 𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0.

or 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, … , 𝑛.

b) The objective function is a function of the decision variables and in general it is denoted by 
𝑓 𝑥1, 𝑥2, … , 𝑥𝑛

▪ Example: profit, cost, time, …, etc. 

▪ It should be maximized or minimized.

c) Constraints are mathematical expression which combine the decision variables in order to make 
limits on the possible solutions. 
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➢ Standard form of linear programming problems (LPP):

Optimize (Max or Min)

 Z = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛

Subject to 

𝑔𝑗 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ = or ≥ 𝑏𝑗

𝑗 = 1, 2, … , 𝑚.
 𝑥𝑖≥ 0;  𝑖 = 1, 2, … , 𝑛.
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where, 

              Z = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛           objective function.

and 𝑔𝑗 𝑥1, 𝑥2, … , 𝑥𝑛  can be represented by 
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮ 
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

 𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0  non-negative constraints.

Constants ቊ
𝑐𝑖  ,  𝑖 = 1,2, … , 𝑛. 
𝑎𝑗𝑖 ,  𝑖 = 1,2, … , 𝑛;  𝑗 = 1,2, … , 𝑚.

Notes: Z and 𝑔𝑗 𝑥1, 𝑥2, … , 𝑥𝑛 ;  𝑗 = 1,2, … , 𝑚, must be linear functions

(= or ≥)
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Some Important Definitions
Solution:

Any vector 𝑥1, 𝑥2, … , 𝑥𝑛  satisfies the constraints of the LPP is called a solution.  

Feasible Solution (FS):

Any solution satisfies the constraints. The non-negative constraints is called FS. 

Basic Solution (BS):

For a set of m equations in n unknown variables 𝑛 > 𝑚 .

A solution that is obtained by setting 𝑛 − 𝑚  of the variables equal to zero and solving the 
remaining m equation in n unknowns is called basic solution.
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Example:

Let 
𝑥1 + 2𝑥2 − 𝑥3 = 1

2𝑥1 − 𝑥2 + 𝑥3 = −1

We have 𝑚 = 2, and 𝑛 = 3. So 𝑛 − 𝑚 = 1.

Then we set one of the variables by zero. For example, let 𝑥3 = 0.

⇒
𝑥1 + 2𝑥2 = 1 

2𝑥1 − 𝑥2 = −1 

⇒  𝑥1 = −
1

5
,  𝑥2 =

3

5

Then, −
1

5
,

3

5
, 0   is called a basic solution. 
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Basic feasible solution: 

For a LPP a basic feasible solution is any basic solution that satisfies the constraints and the non-
negative constraints. 

Optimum feasible solution:

Any basic feasible solution which optimizes (Maximize or minimize) the objective function is 
known as an optimum feasible solution for LPP.
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Methods of Solving LPP
Through this chapter we use two different methods to solve LPP:

1) Graphical Method (only for two variables)

2) The simplex Algorithm
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The Graphical Approach
This approach consists of many steps:

Step 1: Graph the constraints

Step 2: Identify the feasible region

Step 3: Locate the solution points

Step 4: Select one of the following two methods
i. The corner-point method, (better to use when the feasible area is bounded).

ii. The iso-profit or iso-cost method
Iso means the profit (or cost) anywhere on the line is the same.

The following examples show how to apply the graphical approach. 
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Example 1:
Solve using the graphical approach the following LPP

Maximize 𝑍 = 20𝑥1 + 30𝑥2

Subject to the constraints ቐ

3𝑥1 + 3𝑥2 ≤ 36
5𝑥1 + 2𝑥2 ≤ 50
2𝑥1 + 6𝑥2 ≤ 60

 

𝑥1, 𝑥2 ≥ 0
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Solution  
Step 1: Graph the constraints.

3𝑥1 + 3𝑥2 = 36 (1)
5𝑥1 + 2𝑥2 = 50 (2)
2𝑥1 + 6𝑥2 = 60 (3)

Each constraint from the above is defined by two points in (𝑥1, 𝑥2)-plane as follows:

In equation (1), 

           Let 𝑥1 = 0 ⇒  𝑥2 = 12 ⇒ The first point is (0,12).

           Let 𝑥2 = 0 ⇒  𝑥1 = 12 ⇒ The second point is (12,0).

In equation (2) we have 0,25  and 10,0 .

In equation (3) we have 0,10  and 30,0 .

Consider one extra point for each constraint to identify the are that fulfils the constraint. 
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The shaded area satisfies
3𝑥1 + 3𝑥2 ≤ 36

    (The first constraint)

The shaded area satisfies
5𝑥1 + 2𝑥2 ≤ 50

   (The second constraint)

The shaded area satisfies
2𝑥1 + 6𝑥2 ≤ 60

   (The third constraint)
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Step 2: Identify the feasible region:

The feasible region is represented by the shaded area defined by the shape (A B C D E).

Don’t forget to draw the constraint 𝑥1, 𝑥2 ≥ 0 

(1)

(2)

(3)
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Step 3: The feasible region:

Shaded area has an infinite number of solutions that would satisfy all constraints. Only we 
search for the points that makes 𝑍 maximum. Those points will be only among the points of the 
solution space (shaded area). 

Theorem:

Let the solution space of an LPP be a compact region bounded by lines in plane. Then the 
objective attains its maxima (or minima) at vertices (corners of feasible region). 

In our example, the corner points are: A, B, C, D, E

where,  A = 10, 0 ,  B = ?, ? ,  C = ? , ? ,  D = 0, 10 ,  E = (0, 0). 
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Calculating the point B:

It is obtained by solving equation (1) and (2) algebraically:

3𝑥1 + 3𝑥2 = 36 1

5𝑥1 + 2𝑥2 = 50 (2)

⇒ 𝐵 =
26

3
,

10

3

Calculating the point C:

It is obtained by solving equation (1) and (3) algebraically:
3𝑥1 + 3𝑥2 = 36 1
2𝑥1 + 6𝑥2 = 60 3

⇒ 𝐶 = 3, 9
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Note: 

The two equations can be solved using determinants as follows:
𝑎11𝑥1 + 𝑎12𝑥2 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 = 𝑏2

Solution: 

𝑥1 =
△ 𝑥1

△
 and 𝑥2 =

△ 𝑥2

△

where,

△=
𝑎11 𝑎12

𝑎21 𝑎22
= 𝑎11𝑎22 − 𝑎12𝑎21

△ 𝑥1 =
𝑏1 𝑎12

𝑏2 𝑎22
= 𝑏1𝑎22 − 𝑏2𝑎21

△ 𝑥2 =
𝑎11 𝑏1

𝑎21 𝑏2
= 𝑎11𝑏2 − 𝑏1𝑎21
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Step 4 (i): Using the corner-point Method:

Evaluate the objective function at each corner point as follows: 

𝑍 0,0 = 20 0 + 30 0 = 0

𝑍 𝐴 = 20 10 + 30 0 = 200

𝑍 𝐵 = 20
26

3
+ 30

10

3
=

820

3
= 273.33

𝑍 𝐶 = 20 3 + 30 9 = 330

Max 𝑍 = 330 at 𝐶 = 3, 9  then C is the optimum solution. 
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Step 4 (ii): Using the iso-profit method:  

Assume any point that belongs to the shaded area, here we assume the point (1,1) that belongs 
to the shades.

⇒ 𝑍 1,1 = 20 + 30 = 50

Then we have the iso-profit line as 20𝑥1 + 30𝑥2 = 50, which can be plotted using two points

0,
50

30
 and 

50

20
, 0  or 0,

5

3
 and 

5

2
, 0

𝑥2

𝑥1

▪ Move the iso-profit line parallel to the 
increasing direction (as we need to maximize 
the profit). Assume points under and above Z to 
determine Z direction. 

▪ Identify the optimum solution as the point on 
where the height possible iso-profit is touched. 
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In the example, C is the optimum solution because highest iso-profit line touches it. 

⇒ The optimal solution is 𝐶 = 3, 9  and max.  𝑍 = 20 3 + 30 9 = 330.

From the above example we can conclude the following results:

1) Any solution lies within (or on the border lines) the shaded region is called feasible solution. 

2) The shaded region is convex. In linear programming, the feasible solution space forms a 
convex set if the line segment joining any two distinct feasible points also falls in the set. 

Example:

 

3) Any solution lies outside the shaded is infeasible solution. 

Convex set Nonconvex set 
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Example 2:

Minimize 𝑍 = 90𝑥1 + 135𝑥2

Subject to

2𝑥1 + 3𝑥2 ≤ 80 
4𝑥1 + 6𝑥2 ≤ 150

𝑥1 ≤ 15
𝑥2 ≤ 10

 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

2𝑥1 + 3𝑥2 = 80 (1)

4𝑥1 + 6𝑥2 = 150 (2)

Each constraint from the above is defined by two points in (𝑥1, 𝑥2)-plane as follows:

In equation (1)  we have 0,
80

3
 and 40, 0 .

In equation (2) we have 0, 25  and
150

4
, 0 .
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Step 2: Identify the feasible region:

The feasible region is represented by the shaded area defined by the shape (O A B C).

Step 3: The feasible region:

where,  O = 0, 0 ,  A = 15, 0 ,  B = 15, 10 ,  C = 0, 10 .

(1)
(2)

(3)

(4)

𝑥1

𝑥2
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Step 4: Using the corner-point Method:

𝑍 𝑂 = 90 0 + 135 0 = 0

𝑍 𝐴 = 90 15 + 135 0 = 1350

𝑍 𝐵 = 90 15 + 135 10 = 2700

𝑍 𝐶 = 90 0 + 135 10 = 1350

⇒ Min 𝑍 = 0 at 𝑂 = 0, 0 .
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Example 3
Minimize 𝑍 = 600𝑥1 + 400𝑥2

Subject to ቐ
3000𝑥1 + 1000𝑥2 ≥ 24000 
1000𝑥1 + 1000𝑥2 ≥ 16000 
2000𝑥1 + 6000𝑥2 ≥ 48000 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

3000𝑥1 + 1000𝑥2 = 24000 (1)

1000𝑥1 + 1000𝑥2 = 16000 2

2000𝑥1 + 6000𝑥2 = 48000 (3)

Each constraint from the above is defined by two points in (𝑥1, 𝑥2)-plane as follows:

In equation (1)  we have 0, 24  & 0, 8 .

In equation (2) we have 0, 16  &  16, 0 .

In equation (3) we have 0, 8  &  24, 0 .
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Step 2: Identify the feasible region:

The feasible region is unbounded. But we seek to minimize  the function of Z. Thus, we have to 
focus on the boundary points only: A, B, C, D.

Step 3: The feasible region:

where,  A = 24, 0 ,  B = 12, 4 ,  C = 4, 12 ,  D = 0, 24 .

(1)

(2)

(3)

𝑥1

𝑥2
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Step 4: Using the corner-point Method:

𝑍 𝐴 = 600 24 + 400 0 = 14400

𝑍 𝐵 = 600 12 + 400 4 = 8800

𝑍 𝐶 = 600 4 + 400 12 = 7200

𝑍 𝐷 = 600 0 + 400 24 = 9600

⇒ Min 𝑍 = 7200 at the optimum solution = C.

It is better to check by iso-cost line. Assume the point (15,10) that belongs to the shades.
⇒ 𝑍 15,10 = 600 15 + 400 10 = 13000

Then we have the iso-cost line as 600𝑥1 + 400𝑥2 = 13000, which can be plotted using two 
points 0, 32.5  and 21.6, 0

28

▪ Move the iso-cost line parallel to the decreasing direction (as we need to minimize the cost). 
Assume points under and above Z to determine Z direction. 

▪ Identify the optimum solution as the point on where the lowest possible iso-cost is touched. 



Example 4
A factory manufactures two articles A and B. To manufacture the article A, a certain machine has 
to be worked for 1.5 hours and in addition a craftsman has to work 2 hours. To manufacture the 
article B, the machine has to be worked for 2.5 hours and in addition the craftsman has to work 
1.5 hours. In a week the factory can avoid of 80 hours of machine time and 70 hours of 
craftsman’s time. The profit on each article A is 5 SR and that on each article B is 4 SR. if all 
articles produced can be sold away. Find how many of each kind should be produced to earn the 
maximum profit per week. 
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Solution
A B Hours 

Machine 1.5 2.5 80

Craftsman 2 1.5 70

Profit 5 4

Suppose that 

Decision Variables ቊ
𝑥1= the number of units of article A produced 
𝑥2= the number of units of article B produced 

Then, the objective function is taken the following form:

Maximize 𝑍 = 5𝑥1 + 4𝑥2  ⇒ 𝑍 is the profit
The constraints:
The machine hours constraint ⇒ 1.5𝑥1 + 2.5𝑥2 ≤ 80
The craftsman hours constraint ⇒ 2𝑥1 + 1.5𝑥2 ≤ 70
The non-negative constraints are: 𝑥1 ≥ 0, 𝑥2 ≥ 0
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Then the mathematical form of the application is:

Maximize 𝑍 = 5𝑥1 + 4𝑥2

Subject to ቊ
1.5𝑥1 + 2.5𝑥2 ≤ 80 
2𝑥1 + 1.5𝑥2 ≤ 70 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

1.5𝑥1 + 2.5𝑥2 = 80 (1)

2𝑥1 + 1.5𝑥2 = 70 2

Each constraint from the above is defined by two points in (𝑥1, 𝑥2)-plane as follows:

In equation (1)  we have 0, 32  & 53.33, 0 .

In equation (2) we have 0, 46.67  & 35, 0 .
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Step 2: Identify the feasible region:

The feasible region : O, A, B, C.

Step 3: The feasible region:

where, O = 0, 0 ,  A = 35, 0 ,  B = 20, 20 ,  C = 0, 32 .

(1)

(2) 𝑥2

𝑥1
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Step 4: Using the corner-point Method:

𝑍 𝑂 = 5 0 + 4 0 = 0

𝑍 𝐴 = 5 35 + 4 0 = 175

𝑍 𝐵 = 5 20 + 4 20 = 180

𝑍 𝐶 = 5 0 + 4 32 = 128

⇒ Max 𝑍 = 180 at the optimum solution ⇒ B = 20,20 . Hence, to maximize the profit Z 
the company should manufacture 20 units of article A and 20 units of article B per week. 

34



Example 5
The manager of an oil refining must decide on the optimum mix of two possible blending 
processes of which the inputs and outputs per production ran are as follows: 

The maximum amount available of crudes A and B is 200 units and 150 units respectively. 
Market requirements show that at least 100 units of gasoline X and 80 units of gasoline Y must 
be produced. The profit per production run from process 1 and process 2 are 300 SR and 400 SR 
respectively. Solve the LPP by graphical approach. 

Inputs Outputs

Process Crude A Crude B Gasoline X Gasoline Y

1 5 3 5 8

2 4 5 4 4
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Suppose that 

𝑥1= the number of production run from process 1.

𝑥2= the number of production run from process 2.

Then, the total profit ⇒ 300𝑥1 + 400𝑥2

⇒ Maximize 𝑍 = 300𝑥1 + 400𝑥2

The constraints:

Cude A ⇒ 5𝑥1 + 4𝑥2 ≤ 200

Crude B ⇒ 3𝑥1 + 5𝑥2 ≤ 150

Gasoline X ⇒ 5𝑥1 + 4𝑥2 ≥ 100

Gasoline Y ⇒ 8𝑥1 + 4𝑥2 ≥ 80

Non-negative constraints : 𝑥1 ≥ 0, 𝑥2 ≥ 0
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Then the mathematical formulation is:

Maximize 𝑍 = 300𝑥1 + 400𝑥2

Subject to

5𝑥1 + 4𝑥2 ≤ 200
3𝑥1 + 5𝑥2 ≤ 150
5𝑥1 + 4𝑥2 ≥ 100
8𝑥1 + 4𝑥2 ≥ 80

 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

5𝑥1 + 4𝑥2 = 200 (1)

3𝑥1 + 5𝑥2 = 150 2

5𝑥1 + 4𝑥2 = 100 (3)

8𝑥1 + 4𝑥2 = 80 (4)

In equation (1)  we have 0, 50  & 40, 0 .

In equation (2) we have 0, 30  & 50 0 .

In equation (3)  we have 0, 25  & 20, 0 .

In equation (4) we have 0, 20  & 10, 0 .
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Step 2: Identify the feasible region:

The feasible region is  A, B, C, D, E.

Step 3: The feasible region:

where, A = 20, 0 ,  B = 40, 0 ,  C =
400

13
,

150

13
,  D = 0, 30 ,  E = 0, 25 .

𝑥2

𝑥1

(1)

(2)

(3)(4)
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Step 4: Using the corner-point Method:

𝑍 𝐴 = 300 20 + 400 0 = 6000

𝑍 𝐵 = 300 40 + 400 0 = 12000

𝑍 𝐶 = 300
400

13
+ 400

150

13
=

180000

13
= 13846.15

𝑍 𝐷 = 300 0 + 400 30 = 12000

𝑍 𝐸 = 300 0 + 400 25 = 10000

Since the maximum value of 𝑍 =
180000

13
= 13846.15 occurs at the optimum solution C. This 

means that the manger of the oil refinery should produce 𝑥1 =
400

13
 units under process 1 

and 𝑥2 =
150

13
 units under process 2 to achieve the maximum profit of 

180000

13
.
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Example 6
Graphically solve the following LPP given by:

Maximize 𝑍 = 2𝑥1 − 𝑥2

Subject to ቊ
𝑥1 − 𝑥2 ≤ 1

2𝑥1 + 𝑥2 ≥ 6
 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

𝑥1 − 𝑥2 = 1 (1)

2𝑥1 + 𝑥2 = 6 2

In equation (1)  we have 0, −1  & 1, 0 .

In equation (2) we have 0, 6  & 3 0 .
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Step 2: Identify the feasible region:

The feasible region is  unbounded and convex too.

Identify the optimal solution: 

Using the iso-profit line, suppose the point 3, 3  in the feasible region

  ⇒  𝑍 3,3 = 2 3 − 3 = 3

Then the iso-profit line is 2𝑥1 − 𝑥2 = 3.

It is obvious that as 𝑥1 increase the value of 𝑍 increases. But the feasible region is unbonded and so in 
this case we have only unbounded solution.

𝑥2

𝑥1

(1)

(2)
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Example 7
Solve the following LPP using graphical approach:

Maximize 𝑍 = 3𝑥1 + 2𝑥2 

Subject to ቐ

1

40
𝑥1 +

1

60
𝑥2 ≤ 1

1

50
𝑥1 +

1

50
𝑥2 ≤ 1

 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

1

40
𝑥1 +

1

60
𝑥2 = 1 (1)

1

50
𝑥1 +

1

50
𝑥2 = 1 2

In equation (1)  we have 0, 60  & 40, 0 .

In equation (2) we have 0, 50  & 50 0 .

45



Step 2: Identify the feasible region:

The feasible region is  O, A, B, C.

Step 3: The feasible region:

where, O = 0, 0 ,  A = 40, 0 ,  B = 20, 30 ,  C = 0, 50 .

𝑥2

𝑥1

(1)

(2)
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Step 4: Using the corner-point Method:

𝑍 𝑂 = 3(0) + 2(0) = 0

𝑍 𝐴 = 3(40) + 2(0) = 120

𝑍 𝐵 = 3(20) + 2(30) = 120

𝑍 𝐶 = 3(0) + 2(50) = 100

It is obvious that Max 𝑍 = 120 and it occurred at A, and B. Using the iso-profit line at (20,0)

  ⇒  𝑍 20,0 = 60 ⇒ 3𝑥1 + 2𝑥2 = 60

If we make lines parallel to the iso-profit line, we see that one of these lines will pass through 
the line between A and B. This means that any points on the line 𝐴𝐵 will be an optimum 
solution and hence we have infinite number of optimal solutions. 
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Example 8
Solve the following LPP:

Maximize 𝑍 = 3𝑥1 + 2𝑥2

Subject to

1

40
𝑥1 +

1

60
𝑥2 ≤ 1

1

50
𝑥1 +

1

50
𝑥2 ≤ 1

𝑥1 ≥ 30
𝑥2 ≥ 20

 

𝑥1, 𝑥2 ≥ 0 
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Solution
Step 1: Graph the constraints.

1

40
𝑥1 +

1

60
𝑥2 = 1 (1)

1

50
𝑥1 +

1

50
𝑥2 = 1 2

In equation (1)  we have 0, 60  & 40, 0 .

In equation (2) we have 0, 50  & 50 0 .
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From the figure we see that there is no feasible solution and hence we have an empty feasible 
region. 

𝑥1

𝑥2(1)

(2)

(3)

(4)
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From the above examples and previous lectures, for a LPP of two variables it may have:

1) Unique optimal solution

2) No solution

3) Alternative or multiple optimal solutions.

4) Unbounded solution. 
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Exercises 

1) Minimize 𝑍 = 3𝑥1 + 2𝑥2

Subject to ቐ
𝑥1 + 𝑥2 = 5

𝑥1 ≤ 4
𝑥2 ≥ 2

 

𝑥1, 𝑥2 ≥ 0 

2) An electric company produce two products𝑃1 and 𝑃2. Products are produced and sold on a weekly 
basis. The weekly production cannot exceed 25 for product 𝑃1and 35 for product 𝑃2 because of limited 
available facilities. The company employs total of 60 workers. Product 𝑃1 requires 2 man-weeks of 
labor, which 𝑃2 requires one man-week of labor. Profit margin on 𝑃1 is 60 SR and on 𝑃2 is 40 SR. 
Formulate it as a LPP and solve for maximizing the profit. 
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Exercises
3) Using graphic Method, find the maximum value of 𝑍 = 7𝑥1 + 10𝑥2

Subject to

𝑥1 + 𝑥2 ≤ 30000
𝑥1 ≥ 6000

𝑥2 ≤ 12000
𝑥1 ≥ 𝑥2

 

𝑥1, 𝑥2 ≥ 0 

4)  Minimize  𝑍 = 200𝑥1 + 400𝑥2

Subject to

𝑥1 + 𝑥2 ≥ 200
1

4
𝑥1 +

3

4
𝑥2 ≥ 100

1

10
𝑥1 +

1

5
𝑥2 ≤ 35

 

𝑥1, 𝑥2 ≥ 0 
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5) Minimize  𝑍 = −𝑥1 + 2𝑥2

Subject to

5𝑥1 − 2𝑥2 ≤ 3
𝑥1 + 𝑥2 ≥ 1

−3𝑥1 + 𝑥2≤ 3
−3𝑥1 − 3𝑥2≤ 2

 

𝑥1, 𝑥2 ≥ 0
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