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Abstract

Using non-linear duality, we present several relations between the
existence of non-trivial twisted sums of two Banach spaces and the
existence of non-trivial twisted sums of their complemented subspaces
and their duals, and we give some concrete examples. Also, we construct
a quasi-linear map between two sequence spaces using an existed

bounded linear map, and we prove that Ext(Y, Z) = 0 is a three space

property for Z.

1. Introduction

A diagram 0 — Y5 X527 50 of quasi Banach spaces and bounded
linear operators is called an exact sequence if the kernel of each arrow
coincides with the image of the preceding one. The open mapping theorem
implies that X contains i(Y) and the quotient X/i(Y) is isomorphic to Z.

In this case, we shall say that X is a twisted sum of Y and Z.

Two exact sequences 0 > Y > X; > Z2—>50and 05Y > Xy 52 >0

are said to be equivalent if there is a bounded linear operator 7" making
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the diagram
0-Y->Xi >Z->0
|74
05Y > X9 >2Z2->50

commutative. The three-lemma and the open mapping theorem imply
that 7" must be an isomorphism, Cabello and Castillo [3, p. 525]. An exact
sequence 0 > Y > X — Z — 0 is said to be split if it is equivalent to
the trivial exact sequence 0 - Y - Y® Z — Z — 0, in this case, we
say that X is trivial. We denote by Ext(Z, Y) the space of all equivalence
classes of locally convex twisted sums of Y and Z. Thus Exi(Z,Y)=0
means that all locally convex twisted sums of Y and Z are equivalent to
the direct sum Y @ Z. An operator T : X — Y of Banach spaces is an
isomorphism if it is an invertible bounded linear map, 7' is an isometry if

[Tx| =] x| for every x € X, it is a A-isomorphism, A >1, if T is an
isomorphism and | T | < 2, ||T_1 | <A, Heinrich [8, II.6]. The distance

between two homogeneous maps 7} and 7, acting between the same

spaces is given by
dist(7}, Ty) = sup{| T1x — Tox || : | x || < 1}.

We note that bounded maps are those maps at finite distance from
the zero map, also it should be kept in mind that linear maps are not
assumed to be bounded.

The reader is referred to Castillo and Gonzalez [6] for a detailed
account of exact sequences. The classical theory of Kalton and Peck [11]
describes short exact sequences of quasi-Banach spaces in terms of the so-
called quasi-linear maps. A homogeneous map F : Z — Y between two
Banach spaces Z and Y is said to be quasi-linear if for some constant &

and all z, w € Z it satisfies
| F(z + w) - F(z) - Fw) | < k(| 2 | + | w ).

The smallest constant satisfying the above inequality is called the
quasi-linearity constant of the map F and is denoted by Q(F') Cabello and
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Castillo [4]. If F : Z — Y 1is a quasi-linear map, then it is possible to
construct a twisted sum Y @y Z by endowing the product space Y x Z

with the quasi-norm |(y, z)| =y - F(z)| +]z|. Clearly, the subspace
{(0): yeY} of Y®F Z is isometric to Y and the corresponding
quotient (Y ®p Z)/Y is isometric to Z. Conversely, given a short exact
sequences 0 > Y - X - Z —» 0, aquasi-linearmap F : Z — Y can be
obtained such that X is equivalent to Y ®p Z [6, 1.5]. Two quasi-linear

maps F and G of a Banach space Z into a Banach space Y are said to be

equivalent if the corresponding exact sequences 0 > Y > Y ®p Z
—-Z—>0and 0 >Y - Y®; Z > Z — 0 are equivalent, in this case,
we say that F'is a version of G. It is shown that quasi-linear maps F and
G are equivalent if and only if d(F - G, L(Z,Y)) = inf{dist(F - G, L) :
L e L(Z, Y)} <o [11, Theorem 2.5], where L(Z, Y) is the space of all

linear maps L : Z — Y. A quasi-linear map F : Z — Y 1is said to be
trivial if the exact sequence 0 > Y > Y ®p Z - Z — 0is equivalent to
0>Y>Y®Z > Z — 0. Consequently, F'is trivial if and only if F is at a
finite distance from some linear map [1, Theorem 16.2]. In particular, F'is
trivial if and only if it can be written as the sum of a bounded and a
linear map. There is a one to one correspondence between the classes of
twisted sums Y @ Z and the classes of quasi-linear maps F:Z —>Y,
Benyamini and Lindenstrauss [1, 16.2]. A homogeneous map F : Z —» Y
acting between two Banach spaces is said to be zero-linear if there is

some constant £ such that whenever zi, z9, ..., 2,, are finitely many

elements of Z, then

|2 )2 pe| < /(1)

The smallest constant satisfying the above inequality, denoted by

Z(F), is called the zero-linearity constant of F. We note that a zero-linear
map is a quasi-linear map, and that a twisted sum Y @y Z of Banach

spaces Y and Z is locally convex if and only if Fis zero-linear [6, 1.6.¢].
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2. Nonlinear Duality

Let F : Z — Y be a zero-linear map that induces the exact sequence
0—-Y —>X —>Z—0. Then the dual sequence 0 > Z* > X" > Y" - 0
is well defined and exact [6, 2.2.d], and for each y* € Y™, the composition
y" o F :Z — K is a zero-linear map with Z(y" o F) < Z(F)| y" |, so that
there is a linear map H(y"): Z — K such that |H(y")-y" o F| <
Z(F)|»"| [3, Lemma 1], and the map H : Y" — L(Z, K) need not to be
linear. Take a Hamel basis (g,) for Y”, and define a map Ly : Y —
L(Z,K) by Ly(g,)= H(g,) and linearity. Then the map F* = Ly - H
is a zero-linear map from Y* to Z*, and is called a dual map of F.

Moreover, Z(F") < Z(F) and the sequences 0 - Z" — Z" ® . Y —

YY" 50 and 052" > (Y®r Z)' > Y" - 0 are equivalent [3,
Theorem 3]. A zero-linear map G : Y* — Z" is called a version of F™ if
G=L-H', where L,H :Y" - L(Z,K) such that H’' is a
homogeneous map satisfying ||H'(y")=y" o F| < M|y"| for some
constant M, and L’ is linear that coincide with H’ on any Hamel basis of
Y* [3, Remark 1]. There is a version G of the zero-linear map
F*™ : Z"™ - Y™ such that the restriction of G to Z coincides with F [3,
Lemma 2]. An exact sequence 0 - A — B — C — 0 is said to be a dual
sequence if there is an exact sequence 0 > Y - X — Z — 0 such that
Y, X and Z are preduals of A, B and C, respectively.

Theorem 2.1. Let Z and Y be Banach spaces such that Y is
complemented in its bidual. If Ext(Z**,Y) = 0, then Ext(Z,Y) = 0.

Proof. Suppose that Ext(Z™, Y) = 0, then all locally convex twisted

sums of Yand Z** are equivalentto Y @ Z™. Let F : Z — Y be a zero-

linear map, and consider a version G of the dual zero-linear map

F™ : Z™ — Y™ that coincides with F on Z, then the composition map
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Z7"5Y™" LY is a trivial zero-linear map, where n:Y" Y is a
projection. Hence, there is a linear map L : Z** — Y and a constant ¢
such that | (o G)(z) - L(z)| < ¢| 2| for all ze Z™ [3, Lemma 1], which
implies that || F (z)- L(z)| < ¢|z| for all ze Z, since no G|y, = F.
That is, dist(F, L| z) < ¢, proving that F is trivial, by [1, Theorem 16.2]. [

Duals of a zero-linear map play an important role in establishing a
relation between the existence of a non-trivial twisted sum of Banach
spaces and the existence of a non-trivial twisted sum of their duals as we

see in the following:

Theorem 2.2. Let Y and Z be Banach spaces. Then Ext(Y, Z*) = 0 if
and only if Ext(Z,Y") = 0.

Proof. Suppose that Ext(Y, Z*)=0, andlet F : Z — Y" be a zero-
linear map. Let F* : Y™ — Z* and F™ : Z" — Y™ be dual zero-
linear maps of F and F”", respectively, such that F**| , = F. Then F™*
can be written as Ly — H, where Ly : Z*° — L(Y™, K) is a linear
map, and H : Z*° — L(Y™, K) is a homogeneous map satisfying

for all 2" € Z™ and 2" € Y™ [3, Theorem 3]. Let G = F* | y: Y — Z7,
and define ¢:Z" - Y" by ¢(z")=Lg(")y-H(E")|y. It is clear
that ¢ is a version of the dual zero-linear map G : Z** — Y". Since
Ext(Y, Z") = 0, G is trivial, and so is ¢ [3, Theorem 3]. Hence, there is a
linear map L : Z*° — Y" such that dist(p, L) < c. But

(0(2) (y) = Ly () () - (H(=) () = (F7 (=) () = (F(2)) (»),
for all yeY, zeZ, and so, ¢|z = F. Therefore, F is trivial, since

dist(F, L| ;) = dist(¢| 4, L| z) < . Proving that Ext(Z,Y")=0. The

converse follows by symmetry. 0
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Proposition 2.3. Let Y}, Yy and Z be Banach spaces. Then

(1) Ext(Z,Y; ®Y9) =0 if and only if Ext(Z,Y;) # 0, for some i =1, 2.

(1) Ext(Y; ®Yy, Z) =0 if and only if Ext(Y;, Z) # 0, for some i =1, 2.

Proof. (i) This is Lemma 4 of [3].

(i) Suppose that Ext(Y; ® Yo, Z) # 0, and Exi(Y;, Z) =0 for i =1, 2,
and let F:Y; ®Yy, - Z be a non-trivial zero-linear map. By [11,
Theorem 2.5], there is a linear map L; : Y; - Z, and a constant ¢; such
that || F(y;)— Li(»;) || < ;]| i || for all y; €Y;. Define a linear map
L:Yy®Yy > Z by L(y)= Li(y;) + Ly(y9), for y = y; +y9 € Y] ® Yy,
then

| ) = L) < ZE) (o1 |+ a2 D+l o [+ 22l 2 |
<@ZF)+tu +t)(n l+]1y2)
=ZF)+t +t)| ¥

for all y=y+y93 €Y, ®Y,, which implies that F is trivial, a
contradiction.

Conversely, suppose that Ext(Y;, Z) # 0, and assume on the contrary
that Ext(Y; ®Yy, Z)=0. Let n:Y; ®Yy — Y; be the canonical projection,

i:Y] > Y ®Y, be the natural injection, and let F' : ¥; — Z be a non-

trivial zero-linear map, then the composition map Y; ® Y, 5Y; EZisa
trivial zero-linear map, since Ext(Y; ® Yy, Z) = 0. Hence, there is a
linear map L :Y; ® Yy, — Z such that | F o n(y) — L(y)| < ¢| y |, for all
y =y +y9 €Y @Yy [3, Lemma 1]. Therefore

| @)= (Lei)@) | =[F(reily) - LEN | < dl i)l = | ],

for all y; € Y;, which implies that F is trivial, by [1, Theorem 16.2], and
hence, Ext(Y;, Z) = 0, a contradiction. 0

Remark. It is important to note that if Ext(Y, Z) # 0 does not imply
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that Ext(A, Z) # 0 for every complemented subspace A of Y. Indeed,
consider the projective presentation 0 - K — ¢; — L;(0,1) — 0 of L;(0,1).
It is easy to see that this sequence does not split, for otherwise L;(0, 1) is
a complemented subspace of ¢; which is impossible, since the space
L;(0, 1) contains f9 [14, Remarks p. 72]. Therefore, Ext(L;(0,1), K)#0
which implies that Ext(¢]", K) # 0, by Proposition 2.3(ii), since L;(0, 1)
is complemented in /., = ¢7" [1, Proposition F9], while Ext(/;, K) = 0 by
projectivity of ¢/ [6, p. 9].

Corollary 2.4. Let Y and Z be Banach spaces such that Z is
complemented in its bidual. If Ext(Z*, Y") = 0, then Ext(Y, Z) = 0.

Proof. It follows from Theorem 2.2 and Proposition 2.3 (i). 0

Corollary 2.5. Let Y and Z be two Banach spaces such that
Ext(Z™, (Y™/Y)) = 0. If Ext(Y™™, Z") # 0, then Ext(Z,Y") # 0.

Proof. Suppose that Ext(Z**, (Y™/Y)") =0, then Ext(Z, (Y*/Y)")

=0, by Theorem 2.1. The result is now immediate by Proposition 2.3,
since Y® = Y* @ (Y*/Y). 0

The converse of Corollary 2.4 is valid for certain Banach spaces as
given in the following theorem. Recall that a Banach space X is said to

satisfy Grothendieck’s theorem (or is a GT space) if whenever T : X — /o

is a bounded linear operator, and (x, ) is an infinite sequence in X such

that »'| f(x,)| < © Vf € X", then Y | T(x,)|| < e [15, Chapter 6].

Theorem 2.6. Let Y and Z be Banach spaces such that Y is
complemented in its bidual by an Lo space, and there is a linear

surjective map q of an Ly space P onto Z such that ker q is a GT-space.

Then, any exact sequence 0 — Z* — W — Y — 0 is a dual sequence. In

particular, if Ext(Z,Y) =0, then Ext(Y", Z") = 0.

Proof. Let Y™ = Y @ X, where Xis an L, space, and let ny, ny be
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the mnatural projections ofY™ onto Y, X, respectively. Since

q" : P*™ - Z™ is a linear surjection of the £; space P** onto Z**, and
ker g™ = (kerq)™ is a GT-space [15, Proposition 6.2], Ext(Z™,(5)=0, by
[11, Theorem 3.1]. Hence Ext(Z™,X)=0 by [4, Theorem 2]. If

0>Z"—> W —>Y" - 0 is a given exact sequence, let F : Y* — Z* be

a zero-linear map that induces the sequence, then it is clear that the dual

zero-linear map F* : Z™* — Y™ can be written as nyF" + nxF". Since
Ext(Z*, X)=0, nxF*:Z"™ - X is a trivial zero-linear map, that is,
nxF" is a sum of a bounded and a linear map. Hence ny F* : Z*° — Y

is a version of F* with its range contained in Y, which implies that the
given sequence is a dual sequence [3, Theorem 4]. Therefore, there is a
predual W of Wsuch that 0 - Z* - W — Y* — 0 is the dual of the
exact sequence 0 »>Y —, W —>Z —0. Thus, if Ext(Z,Y) =0, then

W =Y @ Z, which implies that W =Y" @ Z*, and so Ext(Y", Z*) = 0.1

The Johnson-Lindenstrauss space JL is defined to be the completion

of the linear span of ¢y U {y; : i € I} in 7/, with respect to the norm:

k
H y=a+ ) j=1 HOMLG)
= max{| y [, [(@);cr loyr)h * € o ai(j) are scalars,

where y; is the characteristic function of A;, {4;};.; is an almost

disjoint uncountable family of infinite subsets of N. It is shown that JL
gives a negative solution for the three space problem of “being weakly
compactly generated”, WCG for abbreviation, although ¢y and /5(I) are

WCG spaces, while JL is not, there is an exact sequence 0 — ¢y — JL
— l9(I) = 0 (see [6, Theorem 4.10.a]).

A Banach space X is called an £, space if there exists a constant
A > 1, such that every finite dimensional subspace A of X is contained in

a finite dimensional subspace B of X such that dpy (B, (7)) < 1, where
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dpy(B, E) = inf{| T|||T7'|; T : X - Y is an isomorphism of X onto Y}
is the multiplicative Banach-Mazur distance and n = dim B (see [13,

I1.5.2]). It is known that L, spaces generalizes the L, (u) spaces,
1 < p < o, where Lp(u) is the Banach space of equivalence classes of
measurable functions on (Q, B, u) [1, Theorem F.2 (i)], and every infinite
dimensional £, space has a complemented subspace isomorphic to /.

Example 2.7. Since /i is projective [6, p. 8], the dual sequence
0> (9(I)—> JL' - {1 — 0 of the exact sequence 0 — ¢y — JL — (5(I)
— 0 is trivial. Hence JL* = (1 @ (5(I), and so, JL™ = co @ (5(I).

(i) Since Ext((9, /1) # 0 [4, 4.1], and ¢4(I) is an L, space [13, p.
326], we have Ext({9(I), (1) # 0, by Proposition 2.3 (ii), which implies
that Ext(JL*, /1) # 0, by Proposition 2.3 (ii), and so, Ext(cq, JL™) = 0,

by Theorem 2.2. Also, we have Ext(/y, JL") # 0, by Proposition 2.3 (i),
which implies that Ext(JL, (9) # 0, by Theorem 2.2.

(ii) Since Ext(cy, /1) # 0, [4, 4.3], we have Ext(cy, JL*) # 0, by
Proposition 2.3 (i), which implies that Ext(JL, /1) # 0, by Theorem 2.2.

(iii) Since Ext(¢o, f9) # 0 [11, 4.7, 4.8], we have Ext(¢o(I), /1) # O,
and so Ext(JL', /) # 0, by Proposition 2.3 (ii), which implies that
Ext((9, JL™) # 0, by Theorem 2.2.

The James Tree space (JT, | -|) is defined to be the completion of the

space of finite sequences over the dyadic tree A with respect to the norm

91/2

n
el =sup swp |37 (3w ]|
I=] nezl\)fsl,...,psi Lzl( aeS; }

where the supremum is taken over all finite sets of pairwise disjoint

segments of A. The space J7T is an example of a separable dual space that

does not contain ¢; although it has a non separable dual J7T * 6, 4.14.¢].
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If B is the predual of the space J7, and T is the uncountable set of
branches of A, then there is a non-trivial exact sequence 0 — B — JT*

— (4(T') - 0 such that its dual sequence 0 — /4(I') = JT™* — B — 0
is trivial, that is, JT™* = (4(T) ® B* = (4(I')® JT [6, 4.14].

Example 2.8. (i) Since Ext((q, f9)=# 0 [11, 4.7, 4.8], we have
Ext((y, (5(T")) # 0, and so Ext((y, JT*") # 0, by Proposition 2.3 (i), which
implies that Ext(JT",(5) #0 by Theorem 2.2. Also, we have
Ext((9(T),09) # 0, and so Ext(JT"", ¢5)# 0, by Proposition 2.3 (ii),
which implies that Ext(JT", ¢5) # 0 by Theorem 2.1.

(i) Since Ext(cy, (9)#0 [4, 4.3, Corollary 1], we have Ext(cq, (5(T))
#0, and so Ext(cy, JT™) # 0, by Proposition 2.3 (i), which implies that
Ext(JT", (1) # 0 by Theorem 2.2.

(i) Since (9(I") is a cotype 2 space [14, Corollary 3.6], we have
Ext((.,, ¢5(T')) # 0 [4, Corollary 1], and hence Ext(/,,JT"*)=0, by

Proposition 2.3 (i), which implies that Ext(JT", /..) # 0.

Example 2.9. (i) If a Banach space Z satisfies Ext(Z™", /4) = 0, then
any exact sequence 0 » Z° > W — JT" — 0 is a dual sequence. In
particular, if Ext(Z, JT) =0, then Ext(JT*, Z*) =0, by applying the
argument of the proof of Theorem 2.6, and the fact that JT™* = ¢4(I')
®JT.

(i1) Let A be an uncomplemented subspace A of ¢; isomorphic to /;
[2] and consider the natural quotient map ¢ :¢; — ¢;/A. Then kerq = A
is a GT-space, since it is an £; space [15, Chapter 6]. Since JT™* =
JT @ (4(T), and /4(T) is an Ly space, any exact sequence 0 — (/1/A)"

— W — JT* - 0 is a dual sequence.
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Example 2.10. Since Ext(L;(0,1), () =0, we have Ext((4,(L;(0,1))")
=0, by Theorem 2.1. Since L;(0, 1) is separable, there is a separable

Banach space Y with a quotient map ¢ from Y™ onto L;(0, 1) and such
that Y™ =2 Y @ (L;(0,1))* [12]. Therefore, any exact sequence 0 — /g — W

— Y* - 0 is a dual sequence, by Theorem 2.2.
3. Twisted Sums of Sequence Spaces

A map f: X — Y between normed spaces X and Y, is said to be

quasi-additive if it satisfies the following properties:
0) | £ +2) - =)~ ) < K( x| + ] 2D . 2 < X,
@) lim;_,q f(tx) = 0, x € X,
(i) f(-x) = —f(x), x € X.

Quasi-additive maps defined on dense subspaces of sequence spaces
give rise to quasi-linear maps on the sequence spaces, Kalton and Peck
[11].

Let £ denote the class of Lipschitz functions ¢ : R — R such that
o) = 0 for ¢t < 0, and X be a solid quasi-normed FK — space, that is, X is

a Frechet sequence space with continuous coordinates and satisfies the

following properties:

(1) The space X of finite sequences is dense in X.
() || e, | =1, where e, is the nth basis vector (e, (k) = 8,).

(@) If se (, and x € X, then |sx |y < ||s||4m||x||X
@ =], <[x[y foral xe X

Theorem 3.1. Let X and Y be two sequence spaces with the above
properties (1) to (4) and unit vector bases {e,} and {y,}, respectively. If

T:X — Y is an injective bounded linear map such that Te; = y;, and

0 € £, then there is a quasi-linear map Fy : X —'Y such that
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Ry - {u ey} a0

0, otherwise

forall x € Xy, where f : Xo — Y, is a quasi-additive map defined by

T(x)(k)o(-log| T(x) (k) [), if T(x)(k) =0

0, otherwise.

flx) (k) = {
Proof. Let L, be the Lipschitz constant of ¢. Then
| (0 +t2)d(-log| ) + 23 |) — t10(-log| #; |) — tad(-log| t5 )|
< Ly(log 2)|#; +1 |
for all ¢;, t9 € R [11, Theorem 3.7 (i)]. Define f : Xy — Yy by

T(x)(k)§(-log| T'(x)(k)[), if T(x)(k) =0

0, otherwise.

flx) (k) = {

Then for all x, z € X,
| f(x +2) (k) = f(x) (k) - f(2) (%) |
= |T(x + 2)(R)p(-log | T'(x) (k) + T(2) (k)]) = T(x) () $(-log| T(x) (k) |)
~T(2) (k) ¢(log| T(2) (%) )|
< Ly(log 2)| T(x) (k) + T'(2) (k) |,
so that
| flx +2) = f(x) = f(2) |y < Ly(og2)(| T(x) [+ [ T(2)])
< Ly| T || (log 2) (| x || + 2 )

It is easy to see that lim;_,o f(¢éx) (k) = O for every k € N since

| 1
%8 T (x) (k) ‘

| f(tx)(R)| < Ly

1
o)

which implies that lim;_,q f(tx) = 0.
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Since f(-x)=—f(x) for all x € X, that is, f is quasi additive. Now
put

Ry - | 17 ||f[m

0, otherwise.

), if x # 0,

By [11, Theorem 3.5], F} 1s a quasi-linear map on X, which extends
to a quasi-linear map F¢ : X - Y [11, Theorem 3.1], proving the theorem.
The following theorem is proved in [11, Theorem 4.2] when X =Y.

However, given the foregoing, inspection of the proof shows it to be valid

more generally:

Theorem 3.2. Let X and Y be as in Theorem 2.1 and let T : X — Y

be an injective bounded linear map satisfying:

(1) Te; = yj, where j 2 i.

@) | Tx || = af x|, for some o > 0 and for all

X € {Zn 0,¢; : 6; =1, 0, for all n > no}

i=ng
for some ny € N.

Suppose that no subsequence of the canonical basis {e,} in X is
equivalent to the canonical basis of cy. Then:

@) for any ¢, v € £, the two twisted sums Y ®F¢ X and Y @G\u X

are equivalent if and only if

sup | 6(6) = w(t)| < e,

O<t<o

@) forany ¢ £, Y @F¢ X is trivial if and only if ¢ is bounded.

The Schreier Space S,, 1< p < oo, is the completion of the space of
finite sequences with respect to the following norm:

1

_ p\p
Ixls, = s 3 li17)7,
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where the supremum is taken over all “admissible” subsets A =
{ny, ng, ..., n,} of N such that n; < ng <---<ny and k < n;. Note that

(, is algebraically contained in S, since | x "Sp <l x| Iy

p p°

Example 3.3. Let 1 < p <, andlet T': /, — Sp be the identity
map. Then T is a bounded injective linear map. For any finitely many

we have

N
Zj:l eij S

€5 Ciys s Cins ‘ > N/2, and hence
D

N

e
Z lj
j=1

N
= Z eij > N/2,
S, j=1 Sy

which implies that

N
e,
Zj=1 Y

> oof = (5] 2

Sp p

Therefore
1 1/17
751, = (5) 1=,

forall x € {Zlnl 0, :0; =0,%l, n € N}.

1 1

Since (n ?)e S, and (n P) ¢ (,, T'is not an isomorphism onto S,.
So using any unbounded Lipschitz function, e.g., ®() = ¢ for ¢t > 0 and 0

otherwise, 7' induces a non-trivial twisted sum S, Dy £ p, where the

non-trivial quasi-linear map F : {e,}, — {e,}g is givenby
p D

X .
P ||f(mj, ifx %0

0, otherwise,

F(x) =
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where

-x(k)log| x(k)|, 1if x(kR) =0
f(x)(k):{ (k)log ()], if (k) =

0, otherwise,

where x € {en}[p.

Recall that a Banach space property is said to be a three space
property if whenever it is satisfied by a closed subspace Y of a Banach

space X and the corresponding quotient X/Y, then it is satisfied by X. It
has been proved in [5] that Ext(Y, Z) = 0 is a three space property for Y.
The following theorem shows that Exi(Y, Z)=0 is a three space
property for Z.

Theorem 3.4. Let Z and Y be Banach spaces and let E be a closed
subspace of Z such that Ext(Y, E)=0 and Ext(Y,Z/E)=0. Then
Ext(Y, Z) = 0.

Proof. Let 0 > Z — Zw(I)q—Z> l(I)/Z — 0 Dbe an injective presentation
of Z, and let T :Y — ((I)/Z be a bounded linear operator. Consider
the natural isomorphism n : (¢, (I)/E)/(Z/E) — (,,(I)/Z, then 0 'T : Y
= ((,(I)/E)/(Z/E) is a bounded linear map, and so, there is a bounded
linear operator y:Y — ¢ (I)/E, by [10, Theorem 3.1], since Ext(Y,Z/E)
= 0. Consequently, there is a bounded linear operator y :Y — /¢ (I),
since Ext(Y, E) =0 [10, Theorem 3.1]. Hence, we have the following

commutative diagram

(t(D)E)(ZIE)D 0., (1))Z

qT T
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where ¢ and p are the natural quotient maps. Clearly ngp : /()

— ((I)/Z is the natural quotient map ¢z, and T = qz7. Therefore
Ext(Y, Z) = 0 by [10, Theorem 3.1]. 0

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
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