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PREFACE

The social, behavioral, and health sciences have a need for the ability to use non-

parametric statistics in research. Many studies in these areas involve data that are 

classiied in the nominal or ordinal scale. At times, interval data from these ields 

lack parameters for classiication as normal. Nonparametric statistical tests are useful 

tools for analyzing such data.

Purpose of This Book

This book is intended to provide a conceptual and procedural approach for nonpara-

metric statistics. It is written so that someone who does not have an extensive 

mathematical background may work through the process necessary to conduct the 

given statistical tests presented. In addition, the outcome includes a discussion of 

the inal decision for each statistical test. Each chapter takes the reader through an 

example from the beginning hypotheses, through the statistical calculations, to the 

inal decision as compared with the hypothesis. The examples are then followed by 

a detailed, step-by-step analysis using the computer program SPSS®. Finally, research 

literature is identiied which uses the respective nonparametric statistical tests.

Intended Audience

While not limited to such, this book is written for graduate and undergraduate stu-

dents in social science programs. As stated earlier, it is targeted toward the student 

who does not have an especially strong mathematical background, but can be used 

effectively with a mixed group of students that includes students who have both 

strong and weak mathematical background.

Special Features of This Book

There are currently few books available that provide a practical and applied approach 

to teaching nonparametric statistics. Many books take a more theoretical approach 

to the instructional process that can leave students disconnected and frustrated, in 

need of supplementary material to give them the ability to apply the statistics taught.

It is our hope and expectation that this book provides students with a concrete 

approach to performing the nonparametric statistical procedures, along with their 

application and interpretation. We chose these particular nonparametric procedures 

since they represent a breadth of the typical types of analyses found in social science 

research. It is our hope that students will conidently learn the content presented 

with the promise of future successful applications.

ix
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In addition, each statistical test includes a section that explains how to use the 

computer program SPSS. However, the organization of the book provides effective 

instruction of the nonparametric statistical procedures for those individuals with or 

without the software. Therefore, instructors (and students) can focus on learning the 

tests with a calculator, SPSS, or both.

A Note to the Student

We have written this book with you in mind. Each of us has had a great deal of 

experience working with students just like you. Over the course of that time, it has 

been our experience that most people outside of the ields of mathematics or hard 

sciences struggle with and are intimidated by statistics. Moreover, we have found 

that when statistical procedures are explicitly communicated in a step-by-step 

manner, almost anyone can use them.

This book begins with a brief introduction (Chapter 1) and is followed with 

an explanation of how to perform the crucial step of checking your data for normality 

(Chapter 2). The chapters that follow (Chapters 3–9) highlight several nonparametric 

statistical procedures. Each of those chapters focuses on a particular type of variable 

and/or sample condition.

Chapters 3–9 each have a similar organization. They each explain the statistical 

methods included in their respective chapters. At least one sample problem is 

included for each test using a step-by-step approach. (In some cases, we provide 

additional sample problems when procedures differ between large and small sam-

ples.) Then, those same sample problems are demonstrated using the statistical 

software package SPSS. Whether or not your instructor incorporates SPSS, this 

section will give you the opportunity to learn how to use the program. Toward the 

end of each chapter, we identify examples of the tests in published research. Finally, 

we present sample problems with solutions.

As you seek to learn nonparametric statistics, we strongly encourage you to 

work through the sample problems. Then, using the sample problems as a reference, 

work through the problems at the end of the chapters and additional data sets 

provided.

New to the Second Edition

Given an opportunity to write a second edition of this book, we revised and expanded 

several portions. Our changes are based on feedback from users and reviewers.

We asked several undergraduate and graduate students for feedback on Chap-

ters 1 and 2. Based on their suggestions, we made several minor changes to Chapter 

1 with a goal to improve understanding. In Chapter 2, we expanded the section that 

describes and demonstrates the Kolmogorov–Smirnov (K-S) one-sample test.

After examining current statistics textbooks and emerging research paper, we 

decided to include two additional tests. We added the sign test to Chapter 3 and the 

Kolmogorov–Smirnov (K-S) two-sample test to Chapter 4. We also added a discus-

sion on statistical power to Chapter 3 as requested by instructors who had adopted 

our book for their courses.



PREFACE xi

Since our book’s irst edition, SPSS has undergone several version updates. 

Our new edition of the book also has updated directions and screen captures for 

images of SPSS. Speciically, these changes relect SPSS version 21.

We have included web-based tools to support our book’s new edition. If you 

visit the publisher’s book support website, you will ind a link to a Youtube channel 

that includes narrated screen casts. The screen casts demonstrate how to use SPSS 

to perform the tests included in this book. The publisher’s book support website also 

includes a link to a decision tree that helps the user determine an appropriate type 

of statistical test. The decision tree is organized using Prezi. The branches terminate 

with links to the screen casts on YouTube.

Gregory W. Corder

Dale I. Foreman
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CHAPTER 1

NONPARAMETRIC STATISTICS: 

AN INTRODUCTION

1.1 OBJECTIVES

In this chapter, you will learn the following items:

• The difference between parametric and nonparametric statistics.

• How to rank data.

• How to determine counts of observations.

1.2 INTRODUCTION

If you are using this book, it is possible that you have taken some type of introduc-

tory statistics class in the past. Most likely, your class began with a discussion about 

probability and later focused on particular methods of dealing with populations and 

samples. Correlations, z-scores, and t-tests were just some of the tools you might 

have used to describe populations and/or make inferences about a population using 

a simple random sample.

Many of the tests in a traditional, introductory statistics text are based on 

samples that follow certain assumptions called parameters. Such tests are called 

parametric tests. Speciically, parametric assumptions include samples that

• are randomly drawn from a normally distributed population,

• consist of independent observations, except for paired values,

• consist of values on an interval or ratio measurement scale,

• have respective populations of approximately equal variances,

• are adequately large,* and

• approximately resemble a normal distribution.

1

*The minimum sample size for using a parametric statistical test varies among texts. For example, Pett 

(1997) and Salkind (2004) noted that most researchers suggest n > 30. Warner (2008) encouraged con-

sidering n > 20 as a minimum and n > 10 per group as an absolute minimum.
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If any of your samples breaks one of these rules, you violate the assumptions of a 

parametric test. You do have some options, however.

You might change the nature of your study so that your data meet the needed 

parameters. For instance, if you are using an ordinal or nominal measurement scale, 

you might redesign your study to use an interval or ratio scale. (See Box 1.1 for a 

description of measurement scales.) Also, you might seek additional participants to 

enlarge your sample sizes. Unfortunately, there are times when one or neither of 

these changes is appropriate or even possible.

BOX 1.1 

MEASUREMENT SCALES.

We can measure and convey variables in several ways. Nominal data, also called categori-

cal data, are represented by counting the number of times a particular event or condition 

occurs. For example, you might categorize the political alignment of a group of voters. 

Group members could either be labeled democratic, republican, independent, undecided, 

or other. No single person should fall into more than one category.

A dichotomous variable is a special classiication of nominal data; it is simply a 

measure of two conditions. A dichotomous variable is either discrete or continuous. A 

discrete dichotomous variable has no particular order and might include such examples as 

gender (male vs. female) or a coin toss (heads vs. tails). A continuous dichotomous vari-

able has some type of order to the two conditions and might include measurements such 

as pass/fail or young/old.

Ordinal scale data describe values that occur in some order of rank. However, distance 

between any two ordinal values holds no particular meaning. For example, imagine lining 

up a group of people according to height. It would be very unlikely that the individual 

heights would increase evenly. Another example of an ordinal scale is a Likert-type scale. 

This scale asks the respondent to make a judgment using a scale of three, ive, or seven 

items. The range of such a scale might use a 1 to represent strongly disagree while a 5 

might represent strongly agree. This type of scale can be considered an ordinal measure-

ment since any two respondents will vary in their interpretation of scale values.

An interval scale is a measure in which the relative distances between any two sequen-

tial values are the same. To borrow an example from the physical sciences, we consider 

the Celsius scale for measuring temperature. An increase from −8 to −7°C degrees is 

identical to an increase from 55 to 56°C.

A ratio scale is slightly different from an interval scale. Unlike an interval scale, a ratio 

scale has an absolute zero value. In such a case, the zero value indicates a measurement 

limit or a complete absence of a particular condition. To borrow another example from the 

physical sciences, it would be appropriate to measure light intensity with a ratio scale. 

Total darkness is a complete absence of light and would receive a value of zero.

On a general note, we have presented a classiication of measurement scales similar to 

those used in many introductory statistics texts. To the best of our knowledge, this hierar-

chy of scales was irst made popular by Stevens (1946). While Stevens has received agree-

ment (Stake, 1960; Townsend & Ashby, 1984) and criticism (Anderson, 1961; Gaito, 1980; 

Velleman & Wilkinson, 1993), we believe the scale classiication we present suits the 

nature and organization of this book. We direct anyone seeking additional information on 

this subject to the preceding citations.
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*Malthouse (2001) and Osborne and Overbay (2004) presented discussions about the removal of 

outliers.

If your samples do not resemble a normal distribution, you might have learned 

a strategy that modiies your data for use with a parametric test. First, if you can 

justify your reasons, you might remove extreme values from your samples called 

outliers. For example, imagine that you test a group of children and you wish to 

generalize the indings to typical children in a normal state of mind. After you collect 

the test results, most children earn scores around 80% with some scoring above and 

below the average. Suppose, however, that one child scored a 5%. If you ind that 

this child speaks no English because he arrived in your country just yesterday, it 

would be reasonable to exclude his score from your analysis. Unfortunately, outlier 

removal is rarely this straightforward and deserves a much more lengthy discussion 

than we offer here.* Second, you might utilize a parametric test by applying a math-

ematical transformation to the sample values. For example, you might square every 

value in a sample. However, some researchers argue that transformations are a form 

of data tampering or can distort the results. In addition, transformations do not 

always work, such as circumstances when data sets have particularly long tails. 

Third, there are more complicated methods for analyzing data that are beyond the 

scope of most introductory statistics texts. In such a case, you would be referred to 

a statistician.

Fortunately, there is a family of statistical tests that do not demand all the 

parameters, or rules, that we listed earlier. They are called nonparametric tests, and 

this book will focus on several such tests.

1.3 THE NONPARAMETRIC STATISTICAL 
PROCEDURES PRESENTED IN THIS BOOK

This book describes several popular nonparametric statistical procedures used in 

research today. Table 1.1 identiies an overview of the types of tests presented in 

this book and their parametric counterparts.

TABLE 1.1

Type of analysis Nonparametric test Parametric equivalent

Comparing two related 

samples

Wilcoxon signed ranks test 

and sign test

t-Test for dependent 

samples

Comparing two unrelated 

samples

Mann–Whitney U-test and 

Kolmogorov–Smirnov 

two-sample test

t-Test for independent 

samples

Comparing three or more 

related samples

Friedman test Repeated measures, analysis 

of variance (ANOVA)

Comparing three or more 

unrelated samples

Kruskal–Wallis H-test One-way ANOVA

(Continued)



4 CHAPTER 1 NONPARAMETRIC STATISTICS: AN INTRODUCTION

When demonstrating each nonparametric procedure, we will use a particular 

step-by-step method.

1.3.1 State the Null and Research Hypotheses

First, we state the hypotheses for performing the test. The two types of hypotheses 

are null and alternate. The null hypothesis (HO) is a statement that indicates no dif-

ference exists between conditions, groups, or variables. The alternate hypothesis 

(HA), also called a research hypothesis, is the statement that predicts a difference or 

relationship between conditions, groups, or variables.

The alternate hypothesis may be directional or nondirectional, depending on 

the context of the research. A directional, or one-tailed, hypothesis predicts a statisti-

cally signiicant change in a particular direction. For example, a treatment that 

predicts an improvement would be directional. A nondirectional, or two-tailed, 

hypothesis predicts a statistically signiicant change, but in no particular direction. 

For example, a researcher may compare two new conditions and predict a difference 

between them. However, he or she would not predict which condition would show 

the largest result.

1.3.2 Set the Level of Risk (or the Level of Signiicance) 
Associated with the Null Hypothesis

When we perform a particular statistical test, there is always a chance that our result 

is due to chance instead of any real difference. For example, we might ind that two 

samples are signiicantly different. Imagine, however, that no real difference exists. 

Our results would have led us to reject the null hypothesis when it was actually true. 

In this situation, we made a type I error. Therefore, statistical tests assume some 

level of risk that we call alpha, or α.

Type of analysis Nonparametric test Parametric equivalent

Comparing categorical data Chi square (χ2) tests and 

Fisher exact test

None

Comparing two rank-ordered 

variables

Spearman rank-order 

correlation

Pearson product–moment 

correlation

Comparing two variables when 

one variable is discrete 

dichotomous

Point-biserial correlation Pearson product–moment 

correlation

Comparing two variables when 

one variable is continuous 

dichotomous

Biserial correlation Pearson product–moment 

correlation

Examining a sample for 

randomness

Runs test None

TABLE 1.1 (Continued)
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There is also a chance that our statistical results would lead us to not reject 

the null hypothesis. However, if a real difference actually does exist, then we made 

a type II error. We use the Greek letter beta, β, to represent a type II error. See Table 

1.2 for a summary of type I and type II errors.

TABLE 1.2 

We do not reject the null 

hypothesis

We reject the null 

hypothesis

The null hypothesis is actually true No error Type-I error, α

The null hypothesis is actually false Type-II error, β No error

After the hypotheses are stated, we choose the level of risk (or the level of 

signiicance) associated with the null hypothesis. We use the commonly accepted 

value of α = 0.05. By using this value, there is a 95% chance that our statistical 

indings are real and not due to chance.

1.3.3 Choose the Appropriate Test Statistic

We choose a particular type of test statistic based on characteristics of the data. For 

example, the number of samples or groups should be considered. Some tests are 

appropriate for two samples, while other tests are appropriate for three or more 

samples.

Measurement scale also plays an important role in choosing an appropriate 

test statistic. We might select one set of tests for nominal data and a different set for 

ordinal variables. A common ordinal measure used in social and behavioral science 

research is the Likert scale. Nanna and Sawilowsky (1998) suggested that nonpara-

metric tests are more appropriate for analyses involving Likert scales.

1.3.4 Compute the Test Statistic

The test statistic, or obtained value, is a computed value based on the particular test 

you need. Moreover, the method for determining the obtained value is described in 

each chapter and varies from test to test. For small samples, we use a procedure 

speciic to a particular statistical test. For large samples, we approximate our data 

to a normal distribution and calculate a z-score for our data.

1.3.5 Determine the Value Needed for Rejection of the Null 
Hypothesis Using the Appropriate Table of Critical Values for 
the Particular Statistic

For small samples, we reference a table of critical values located in Appendix B. 

Each table provides a critical value to which we compare a computed test statistic. 

Finding a critical value using a table may require you to use such data characteristics 
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as the degrees of freedom, number of samples, and/or number of groups. In addition, 

you may need the desired level of risk, or alpha (α).

For large samples, we determine a critical region based on the level of risk (or 

the level of signiicance) associated with the null hypothesis, α. We will determine 

if the computed z-score falls within a critical region of the distribution.

1.3.6 Compare the Obtained Value with the Critical Value

Comparing the obtained value with the critical value allows us to identify a differ-

ence or relationship based on a particular level of risk. Once this is accomplished, 

we can state whether we must reject or must not reject the null hypothesis. While 

this type of phrasing may seem unusual, the standard practice in research is to state 

results in terms of the null hypothesis.

Some of the critical value tables are limited to particular sample or group 

size(s). When a sample size exceeds a table’s range of value(s), we approximate our 

data to a normal distribution. In such cases, we use Table B.1 in Appendix B to 

establish a critical region of z-scores. Then, we calculate a z-score for our data and 

compare it with a critical region of z-scores. For example, if we use a two-tailed test 

with α = 0.05, we do not reject the null hypothesis if the z-score is between −1.96 

and +1.96. In other words, we do not reject if the null hypothesis if −1.96 ≤ z ≤ 1.96.

1.3.7 Interpret the Results

We can now give meaning to the numbers and values from our analysis based on 

our context. If sample differences were observed, we can comment on the strength 

of those differences. We can compare the observed results with the expected results. 

We might examine a relationship between two variables for its relative strength or 

search a series of events for patterns.

1.3.8 Reporting the Results

Communicating results in a meaningful and comprehensible manner makes our 

research useful to others. There is a fair amount of agreement in the research litera-

ture for reporting statistical results from parametric tests. Unfortunately, there is less 

agreement for nonparametric tests. We have attempted to use the more common 

reporting techniques found in the research literature.

1.4 RANKING DATA

Many of the nonparametric procedures involve ranking data values. Ranking values 

is really quite simple. Suppose that you are a math teacher and wanted to ind out 

if students score higher after eating a healthy breakfast. You give a test and compare 

the scores of four students who ate a healthy breakfast with four students who did 

not. Table 1.3 shows the results.
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To rank all of the values from Table 1.3 together, place them all in order in a 

new table from smallest to largest (see Table 1.4). The irst value receives a rank of 

1, the second value receives a rank of 2, and so on.

TABLE 1.3 

Students who ate breakfast Students who skipped breakfast

87 93

96 83

92 79

84 73

TABLE 1.4 

Value Rank

73 1

79 2

83 3

84 4

87 5

92 6

93 7

96 8

TABLE 1.5 

Students who ate breakfast Students who skipped breakfast

90 75

85 80

95 55

70 90

Notice that the values for the students who ate breakfast are in bold type. On 

the surface, it would appear that they scored higher. However, if you are seeking 

statistical signiicance, you need some type of procedure. The following chapters 

will offer those procedures.

1.5 RANKING DATA WITH TIED VALUES

The aforementioned ranking method should seem straightforward. In many cases, 

however, two or more of the data values may be repeated. We call repeated values 

ties, or tied values. Say, for instance, that you repeat the preceding ranking with a 

different group of students. This time, you collected new values shown in Table 1.5.
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Rank the values as in the previous example. Notice that the value of 90 is 

repeated. This means that the value of 90 is a tie. If these two student scores were 

different, they would be ranked 6 and 7. In the case of a tie, give all of the tied values 

the average of their rank values. In this example, the average of 6 and 7 is 6.5 (see 

Table 1.6).

TABLE 1.6 

Value

Rank ignoring tied 

values

Rank accounting for tied 

values

55 1 1

70 2 2

75 3 3

80 4 4

85 5 5

90 6 6.5

90 7 6.5

95 8 8

Most nonparametric statistical tests require a different formula when a sample 

of data contains ties. It is important to note that the formulas for ties are more alge-

braically complex. What is more, formulas for ties typically produce a test statistic 

that is only slightly different from the test statistic formulas for data without ties. It 

is probably for this reason that most statistics texts omit the formulas for tied values. 

As you will see, however, we include the formulas for ties along with examples 

where applicable.

When the statistical tests in this book are explained using the computer 

program SPSS® (Statistical Package for Social Scientists), there is no mention of 

any special treatment for ties. That is because SPSS automatically detects the pres-

ence of ties in any data sets and applies the appropriate procedure for calculating 

the test statistic.

1.6 COUNTS OF OBSERVATIONS

Some nonparametric tests require counts (or frequencies) of observations. Determin-

ing the count is fairly straightforward and simply involves counting the total number 

of times a particular observations is made. For example, suppose you ask several 

children to pick their favorite ice cream lavor given three choices: vanilla, chocolate, 

and strawberry. Their preferences are shown in Table 1.7.

To ind the counts for each ice cream lavor, list the choices and tally the total 

number of children who picked each lavor. In other words, count the number of 

children who picked chocolate. Then, repeat for the other choices, vanilla and straw-

berry. Table 1.8 reveals the counts from Table 1.7.
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TABLE 1.7 

Participant Flavor

1 Chocolate

2 Chocolate

3 Vanilla

4 Vanilla

5 Strawberry

6 Chocolate

7 Chocolate

8 Vanilla

TABLE 1.8 

Flavor Count

Chocolate 4

Vanilla 3

Strawberry 1

To check your accuracy, you can add all the counts and compare them with 

the number of participants. The two numbers should be the same.

1.7 SUMMARY

In this chapter, we described differences between parametric and nonparametric 

tests. We also addressed assumptions by which nonparametric tests would be favor-

able over parametric tests. Then, we presented an overview of the nonparametric 

procedures included in this book. We also described the step-by-step approach we 

use to explain each test. Finally, we included explanations and examples of ranking 

and counting data, which are two tools for managing data when performing particu-

lar nonparametric tests.

The chapters that follow will present step-by-step directions for performing 

these statistical procedures both by manual, computational methods and by computer 

analysis using SPSS. In the next chapter, we address procedures for comparing data 

samples with a normal distribution.

1.8 PRACTICE QUESTIONS

1. Male high school students completed the 1-mile run at the end of their 9th grade 

and the beginning of their 10th grade. The following values represent the differ-

ences between the recorded times. Notice that only one student’s time improved 

(−2 : 08). Rank the values in Table 1.9 beginning with the student’s time differ-

ence that displayed improvement.
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2. The values in Table 1.10 represent weekly quiz scores on math. Rank the quiz scores.

TABLE 1.9 

Participant Value Rank

 1 0 : 36

 2 0 : 28

 3 1 : 41

 4 0 : 37

 5 1 : 01

 6 2 : 30

 7 0 : 44

 8 0 : 47

 9 0 : 13

10 0 : 24

11 0 : 51

12 0 : 09

13 −2 : 08

14 0 : 12

15 0 : 56

TABLE 1.10 

Participant Score Rank

 1 100

 2 60

 3 70

 4 90

 5 80

 6 100

 7 80

 8 20

 9 100

10 50

3. Using the data from the previous example, what are the counts (or frequencies) 

of passing scores and failing scores if a 70 is a passing score?

1.9 SOLUTIONS TO PRACTICE QUESTIONS  

1. The value ranks are listed in Table 1.11. Notice that there are no ties.

2. The value ranks are listed in Table 1.12. Notice the tied values. The value of 80 

occurred twice and required averaging the rank values of 5 and 6.
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TABLE 1.11 

Participant Value Rank

 1 0 : 36 7

 2 0 : 28 6

 3 1 : 41 14

 4 0 : 37 8

 5 1 : 01 13

 6 2 : 30 15

 7 0 : 44 9

 8 0 : 47 10

 9 0 : 13 4

10 0 : 24 5

11 0 : 51 11

12 0 : 09 2

13 −2 : 08 1

14 0 : 12 3

15 0 : 56 12

TABLE 1.12 

Participant Score Rank

 1 100 9

 2 60 3

 3 70 4

 4 90 7

 5 80 5.5

 6 100 9

 7 80 5.5

 8 20 1

 9 100 9

10 50 2

 ( ) .5 6 2 5 5+ ÷ =

The value of 100 occurred three times and required averaging the rank values of 

8, 9, and 10.

 ( )8 9 10 3 9+ + ÷ =

3. Table 1.13 shows the passing scores and failing scores using 70 as a passing score. 

The counts (or frequencies) of passing scores is npassing = 7. The counts of failing 

scores is nfailing = 3.
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TABLE 1.13  

Participant Score Pass/Fail

 1 100 Pass

 2 60 Fail

 3 70 Pass

 4 90 Pass

 5 80 Pass

 6 100 Pass

 7 80 Pass

 8 20 Fail

 9 100 Pass

10 50 Fail
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CHAPTER 2

TESTING DATA FOR NORMALITY

2.1 OBJECTIVES

In this chapter, you will learn the following items:

• How to ind a data sample’s kurtosis and skewness and determine if the 

sample meets acceptable levels of normality.

• How to use SPSS® to ind a data sample’s kurtosis and skewness and deter-

mine if the sample meets acceptable levels of normality.

• How to perform a Kolmogorov–Smirnov one-sample test to determine if a 

data sample meets acceptable levels of normality.

• How to use SPSS to perform a Kolmogorov–Smirnov one-sample test to 

determine if a data sample meets acceptable levels of normality.

2.2 INTRODUCTION

Parametric statistical tests, such as the t-test and one-way analysis of variance, are 

based on particular assumptions or parameters. The data samples meeting those 

parameters are randomly drawn from a normal population, based on independent 

observations, measured with an interval or ratio scale, possess an adequate sample 

size (see Chapter 1), and approximately resemble a normal distribution. Moreover, 

comparisons of samples or variables should have approximately equal variances. If 

data samples violate one or more of these assumptions, you should consider using 

a nonparametric test.

Examining the data gathering method, scale type, and size of a sample are 

fairly straightforward. However, examining a data sample’s resemblance to a normal 

distribution, or its normality, requires a more involved analysis. Visually inspecting 

a graphical representation of a sample, such as a stem and leaf plot or a box and 

whisker plot, might be the most simplistic examination of normality. Statisticians 

advocate this technique in beginning statistics; however, this measure of normality 

does not sufice for strict levels of defensible analyses.

13
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In this chapter, we present three quantitative measures of sample normality. 

First, we discuss the properties of the normal distribution. Then, we describe how 

to examine a sample’s kurtosis and skewness. Next, we describe how to perform and 

interpret a Kolmogorov–Smirnov one-sample test. In addition, we describe how to 

perform each of these procedures using SPSS.

2.3 DESCRIBING DATA AND THE NORMAL 
DISTRIBUTION

An entire chapter could easily be devoted to the description of data and the normal 

distribution and many books do so. However, we will attempt to summarize the 

concept and begin with a practical approach as it applies to data collection.

In research, we often identify some population we wish to study. Then, we 

strive to collect several independent, random measurements of a particular variable 

associated with our population. We call this set of measurements a sample. If we 

used good experimental technique and our sample adequately represents our popula-

tion, we can study the sample to make inferences about our population. For example, 

during a routine checkup, your physician draws a sample of your blood instead of 

all of your blood. This blood sample allows your physician to evaluate all of your 

blood even though he or she only tested the sample. Therefore, all of your body’s 

blood cells represent the population about which your physician makes an inference 

using only the sample.

While a blood sample leads to the collection of a very large number of blood 

cells, other ields of study are limited to small sample sizes. It is not uncommon to 

collect less than 30 measurements for some studies in the behavioral and social sci-

ences. Moreover, the measurements lie on some scale over which the measurements 

vary about the mean value. This notion is called variance. For example, a researcher 

uses some instrument to measure the intelligence of 25 children in a math class. It 

is highly unlikely that every child will have the same intelligence level. In fact, a 

good instrument for measuring intelligence should be sensitive enough to measure 

differences in the levels of the children.

The variance s2 can be expressed quantitatively. It can be calculated using 

Formula 2.1:

 s

x x

n

i
2

2

1
=

−

−

∑( )
 (2.1)

where xi is an individual value in the distribution, x  is the distribution’s mean, and 

n is the number of values in the distribution

As mentioned in Chapter 1, parametric tests assume that the variances of 

samples being compared are approximately the same. This idea is called homogene-

ity of variance. To compare sample variances, Field (2005) suggested that we obtain 

a variance ratio by taking the largest sample variance and dividing it by the smallest 

sample variance. The variance ratio should be less than 2. Similarly, Pett (1997) indicated 

that no sample’s variance be twice as large as any other sample’s variance. If the 

homogeneity of variance assumption cannot be met, one would use a nonparametric test.
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A more common way of expressing a sample’s variability is with its standard 

deviation, s. Standard deviation is the square root of variance where s s= 2 . In 

other words, standard deviation is calculated using Formula 2.2:

 
s

x x

n

i

=
−

−

∑( )2

1

 (2.2)

As illustrated in Figure 2.1, a small standard deviation indicates that a sample’s 

values are fairly concentrated about its mean, whereas a large standard deviation 

indicates that a sample’s values are fairly spread out.

FIGURE 2.1
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A histogram is a useful tool for graphically illustrating a sample’s frequency 

distribution and variability (see Fig. 2.2). This graph plots the value of the measure-

ments horizontally and the frequency of each particular value vertically. The middle 

value is called the median and the greatest frequency is called the mode.
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The mean and standard deviation of one distribution differ from the next. If 

we want to compare two or more samples, then we need some type of standard. A 

standard score is a way we can compare multiple distributions. The standard score 

that we use is called a z-score, and it can be calculated using Formula 2.3:

 z
x x

s

i=
−

 (2.3)

where xi is an individual value in the distribution, x  is the distribution’s mean, and 

s is the distribution’s standard deviation.

There is a useful relationship between the standard deviation and z-score. We 

can think of the standard deviation as a unit of horizontal distance away from the 

mean on the histogram. One standard deviation from the mean is the same as z = 1.0. 

Two standard deviations from the mean are the same as z =  2.0. For example, if 

s = 10 and x = 70  for a distribution, then z = 1.0 at x = 80 and z = 2.0 at x = 90. 

What is more, z-scores that lie below the mean have negative values. Using our 

example, z = −1.0 at x = 60 and z = −2.0 at x = 50. Moreover, z = 0.0 at the 

mean value, x = 70. These z-scores can be used to compare our distribution with 

another distribution, even if the mean and standard deviation are different. In other 

words, we can compare multiple distributions in terms of z-scores.

To this point, we have been focused on distributions with inite numbers of 

values, n. As more data values are collected for a given distribution, the histogram 

begins to resemble a bell shape called the normal curve. Figure 2.3 shows the rela-

tionship among the raw values, standard deviation, and z-scores of a population. 

Since we are describing a population, we use sigma, σ, to represent standard devia-

tion and mu, µ, to represent the mean.

FIGURE 2.3

The normal curve has three particular properties (see Fig. 2.4). First, the mean, 

median, and mode are equal. Thus, most of the values lie in the center of the distri-

bution. Second, the curve displays perfect symmetry about the mean. Third, the left 

and right sides of the curve, called the tails, are asymptotic. This means that they 

approach the horizontal axis, but never touch it.
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FIGURE 2.4
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When we use a normal curve to represent probabilities p, we refer to it as the 

normal distribution. We set the area under the curve equal to p =  1.0. Since the 

distribution is symmetrical about the mean, p = 0.50 on the left side of the mean 

and p = 0.50 on the right. In addition, the ordinate of the normal curve, y, is the 

height of the curve at a particular point. The ordinate is tallest at the curve’s center 

and decreases as you move away from the center. Table B.1 in Appendix B provides 

the z-scores, probabilities, and ordinates for the normal distribution.

2.4 COMPUTING AND TESTING KURTOSIS AND 
SKEWNESS FOR SAMPLE NORMALITY

A frequency distribution that resembles a normal curve is approximately normal. 

However, not all frequency distributions have the approximate shape of a normal 

curve. The values might be densely concentrated in the center or substantially spread 

out. The shape of the curve may lack symmetry with many values concentrated on 

one side of the distribution. We use the terms kurtosis and skewness to describe these 

conditions, respectively.

Kurtosis is a measure of a sample or population that identiies how lat or 

peaked it is with respect to a normal distribution. Stated another way, kurtosis refers 

to how concentrated the values are in the center of the distribution. As shown in 

Figure 2.5, a peaked distribution is said to be leptokurtic. A leptokurtic distribution 

has a positive kurtosis. If a distribution is lat, it is said to be platykurtic. A platykurtic 

distribution has a negative kurtosis.

The skewness of a sample can be described as a measure of horizontal sym-

metry with respect to a normal distribution. As shown in Figure 2.6, if a distribution’s 

scores are concentrated on the right side of the curve, it is said to be left skewed. A 

left skewed distribution has a negative skewness. If a distribution’s scores are con-

centrated on the left side of the curve, it is said to be right skewed. A right skewed 

distribution has a positive skewness.



18 CHAPTER 2 TEsTing DATA foR noRmAliTy

The kurtosis and skewness can be used to determine if a sample approximately 

resembles a normal distribution. There are ive steps for examining sample normality 

in terms of kurtosis and skewness.

1. Determine the sample’s mean and standard deviation.

2. Determine the sample’s kurtosis and skewness.

3. Calculate the standard error of the kurtosis and the standard error of the 

skewness.

4. Calculate the z-score for the kurtosis and the z-score for the skewness.

5. Compare the z-scores with the critical region obtained from the normal 

distribution.

The calculations to ind the values for a distribution’s kurtosis and skewness require 

you to irst ind the sample mean x  and the sample standard deviation s. Recall 

that standard deviation is found using Formula 2.2. The mean is found using  

Formula 2.4:

FIGURE 2.5
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 x
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 (2.4)

where ∑xi is the sum of the values in the sample and n is the number of values in 

the sample.

The kurtosis K and standard error of the kurtosis, SEK, are found using Formula 

2.5 and Formula 2.6:
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The skewness Sk and standard error of the skewness, SESk
, are found using Formula 

2.7 and Formula 2.8:
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Normality can be evaluated using the z-score for the kurtosis, zK, and the z-score for 

the skewness, zSk. Use Formula 2.9 and Formula 2.10 to ind those z-scores:

 z
K

SE
K

K

=
−0

 (2.9)

 z
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S

k
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k

=
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 (2.10)

Compare these z-scores with the values of the normal distribution (see Table B.1 in 

Appendix B) for a desired level of conidence α. For example, if you set α = 0.05, 

then the calculated z-scores for an approximately normal distribution must fall 

between −1.96 and +1.96.

2.4.1 Sample Problem for Examining Kurtosis

The scores in Table 2.1 represent students’ quiz performance during the irst week 

of class. Use α = 0.05 for your desired level of conidence. Determine if the samples 

of week 1 quiz scores are approximately normal in terms of its kurtosis.
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First, ind the mean of the sample:
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Next, ind the standard deviation. It is helpful to set up Table 2.2 to manage the 

summation when computing the standard deviation (see Formula 2.2):
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Use the values for the mean and standard deviation to ind the kurtosis. Again, it is 

helpful to set up Table 2.3 to manage the summation when computing the kurtosis 

(see Formula 2.5).

TABLE 2.1

Week 1 quiz scores

90 72 90

64 95 89

74 88 100

77 57 35

100 64 95

65 80 84

90 100 76

TABLE 2.2

xi x xi− ( )x xi−
2

90 9.76 95.29

72 −8.24 67.87

90 9.76 95.29

64 −16.24 263.68

95 14.76 217.91

89 8.76 76.77

74 −6.24 38.91

88 7.76 60.25

100 19.76 390.53

77 −3.24 10.49

57 −23.24 540.01
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xi x xi− ( )x xi−
2

35 −45.24 2046.49

100 19.76 390.53

64 −16.24 263.68

95 14.76 217.91

65 −15.24 232.20

80 −0.24 0.06

84 3.76 14.15

90 9.76 95.29

100 19.76 390.53

76 −4.24 17.96

∑ − =( ) .x xi

2
5525 81

TABLE 2.2 (Continued)

TABLE 2.3

xi

x x

s

i− x x

s

i−









4

90 0.587 0.119

72 −0.496 0.060

90 0.587 0.119

64 −0.977 0.911

95 0.888 0.622

89 0.527 0.077

74 −0.375 0.020

88 0.467 0.048

100 1.189 1.998

77 −0.195 0.001

57 −1.398 3.820

35 −2.722 54.864

100 1.189 1.998

64 −0.977 0.911

95 0.888 0.622

65 −0.917 0.706

80 −0.014 0.000

84 0.226 0.003

90 0.587 0.119

100 1.189 1.998

76 −0.255 0.004

∑
−







 =

x x

s

i

4

69 020.
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Compute the kurtosis:
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Next, ind the standard error of the kurtosis:
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Finally, use the kurtosis and the standard error of the kurtosis to ind a z-score:
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Use the z-score to examine the sample’s approximation to a normal distribution. This 

value must fall between −1.96 and +1.96 to pass the normality assumption for 

α = 0.05. Since this z-score value does fall within that range, the sample has passed 

our normality assumption for kurtosis. Next, the sample’s skewness must be checked 

for normality.

2.4.2 Sample Problem for Examining Skewness

Based on the same values from the example listed earlier, determine if the samples 

of week 1 quiz scores are approximately normal in terms of its skewness.

Use the mean and standard deviation from the previous example to ind the 

skewness. Set up Table 2.4 to manage the summation in the skewness formula.

Compute the skewness:
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TABLE 2.4

xi

x x

s

i− x x
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90 0.587 0.203

72 −0.496 −0.122

90 0.587 0.203

64 −0.977 −0.932

95 0.888 0.700

89 0.527 0.146

74 −0.375 −0.053

88 0.467 0.102

100 1.189 1.680

77 −0.195 −0.007

57 −1.398 −2.732

35 −2.722 −20.159

100 1.189 1.680

64 −0.977 −0.932

95 0.888 0.700

65 −0.917 −0.770

80 −0.014 0.000
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Next, ind the standard error of the skewness:
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Finally, use the skewness and the standard error of the skewness to ind a z-score:
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Use the z-score to examine the sample’s approximation to a normal distribution. This 

value must fall between −1.96 and +1.96 to pass the normality assumption for 

α = 0.05. Since this z-score value does not fall within that range, the sample has 

failed our normality assumption for skewness. Therefore, either the sample must be 

modiied and rechecked or you must use a nonparametric statistical test.

2.4.3 Examining Skewness and Kurtosis for Normality  
Using SPSS

We will analyze the examples earlier using SPSS.

2.4.3.1 Deine Your Variables First, click the “Variable View” tab at the 

bottom of your screen. Then, type the name of your variable(s) in the “Name” 

column. As shown in Figure 2.7, we have named our variable “Wk1_Qz.”

FIGURE 2.7

2.4.3.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen and type your data under the variable names. As shown in Figure 2.8, we 

have typed the values for the “Wk1_Qz” sample.

2.4.3.3 Analyze Your Data As shown in Figure 2.9, use the pull-down menus 

to choose “Analyze,” “Descriptive Statistics,” and “Descriptives . . .”

Choose the variable(s) that you want to examine. Then, click the button in the 

middle to move the variable to the “Variable(s)” box, as shown in Figure 2.10. Next, 

click the “Options . . .” button to open the “Descriptives: Options” window shown 

in Figure 2.11. In the “Distribution” section, check the boxes next to “Kurtosis” and 

“Skewness.” Then, click “Continue.”

Finally, once you have returned to the “Descriptives” window, as shown in 

Figure 2.12, click “OK” to perform the analysis.



FIGURE 2.8

FIGURE 2.9

FIGURE 2.10
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FIGURE 2.11

FIGURE 2.12
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2.4.3.4 Interpret the Results from the SPSS Output Window The SPSS 

Output 2.1 provides the kurtosis and the skewness, along with their associated 

standard errors. In our example, the skewness is −1.018 and its standard error is 

0.501. The kurtosis is 1.153 and its standard error is 0.972.

SPSS OUTPUT 2.1

At this stage, we need to manually compute the z-scores for the skewness and 

kurtosis as we did in the previous examples. First, compute the z-score for kurtosis:
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Next, we compute the z-score for skewness:
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Both of these values must fall between −1.96 and +1.96 to pass the normality 

assumption for α = 0.05. The z-score for kurtosis falls within the desired range, but 

the z-score for skewness does not. Using α = 0.05, the sample has passed the nor-

mality assumption for kurtosis, yet failed the normality assumption for skewness. 

Therefore, either the sample must be modiied and rechecked or you must use a 

nonparametric statistical test.

2.5 COMPUTING THE KOLMOGOROV–SMIRNOV 
ONE-SAMPLE TEST

The Kolmogorov–Smirnov one-sample test is a procedure to examine the agreement 

between two sets of values. For our purposes, the two sets of values compared are 

an observed frequency distribution based on a randomly collected sample and an 

empirical frequency distribution based on the sample’s population. Furthermore, the 

observed sample is examined for normality when the empirical frequency distribu-

tion is based on a normal distribution.

The Kolmogorov–Smirnov one-sample test compares two cumulative fre-

quency distributions. A cumulative frequency distribution is useful for inding the 

number of observations above or below a particular value in a data sample. It is 

calculated by taking a given frequency and adding all the preceding frequencies  
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in the list. In other words, it is like making a running total of the frequencies in a 

distribution. Creating cumulative frequency distributions of the observed and empiri-

cal frequency distributions allow us to ind the point at which these two distributions 

show the largest divergence. Then, the test uses the largest divergence to identify a 

two-tailed probability estimate p to determine if the samples are statistically similar 

or different.

To perform the Kolmogorov–Smirnov one-sample test, we begin by determin-

ing the relative empirical frequency distribution f̂xi  based on the observed sample. 

This relative empirical frequency distribution will approximate a normal distribution 

since we are examining our observed values for sample normality. First, calculate 

the observed frequency distribution’s midpoint M and standard deviation s. The 

midpoint and standard deviation are found using Formula 2.11 and Formula 2.12:

 M x x= + ÷( )max min 2  (2.11)

where xmax is the largest value in the sample and xmin is the smallest value in the 

sample, and

 s

f x
f x

n

n

i i

i i

=
−
( )

−

∑ ∑
( )2

2

1
 (2.12)

where xi is a given value in the observed sample, fi is the frequency of a given value 

in the observed sample, and n is the number of values in the observed sample.

Next, use the midpoint and standard deviation to calculate the z-scores (see 

Formula 2.13) for the sample values xi,

 z
x M

s

i=
−

 (2.13)

Use those z-scores and Table B.1 in Appendix B to determine the probability associ-

ated with each sample value, p̂xi. These p-values are the relative frequencies of the 

empirical frequency distribution f̂r .

Now, we ind the relative values of the observed frequency distribution fr. Use 

Formula 2.14:

 f
f

n
r

i=  (2.14)

where fi is the frequency of a given value in the observed sample and n is the number 

of values in the observed sample.

Since the Kolmogorov–Smirnov test uses cumulative frequency distributions, 

both the relative empirical frequency distribution and relative observed frequency 

distribution must be converted into cumulative frequency distributions F̂xi and Sxi, 

respectively. Use Formula 2.15 and Formula 2.16 to ind the absolute value diver-

gence ɶD and D between the cumulative frequency distributions:

 ɶD F Sx xi i
= −ˆ  (2.15)

 D F Sx xi i
= −

−
ˆ

1
 (2.16)
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Use the largest divergence with Formula 2.17 to calculate the Kolmogorov–Smirnov 

test statistic Z:

 Z n D D= ( )max , ɶ  (2.17)

Then, use the Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula 

(see Formula 2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and 

Formula 2.23) to ind the two-tailed probability estimate p:

 if then0 0 27 1≤ < =Z p. ,  (2.18)

 if then0 27 1 1
2 506628 9 25. ,
.

( )≤ < = − + +Z p
Z

Q Q Q  (2.19)

where

 Q e Z= − −
1 233701 2.  (2.20)

 if then1 3 1 2 4 9 16≤ < = − + −Z p Q Q Q Q. , ( )  (2.21)

where

 Q e Z= −2 2
 (2.22)

 if thenZ p≥ =3 1 0. ,  (2.23)

A p-value that exceeds the level of risk associated with the null hypothesis indicates 

that the observed sample approximates the empirical sample. Since our empirical 

distributions approximated a normal distribution, we can state that our observed 

sample is suficiently normal for parametric statistics. Conversely, a p-value that is 

smaller than the level of risk indicates an observed sample that is not suficiently 

normal for parametric statistics. The nonparametric statistical tests in this book are 

useful if a sample lacks normality.

2.5.1 Sample Kolmogorov–Smirnov One-Sample Test

A department store has decided to evaluate customer satisfaction. As part of a pilot 

study, the store provides customers with a survey to rate employee friendliness. The 

survey uses a scale of 1–10 and its developer indicates that the scores should conform 

to a normal distribution. Use the Kolmogorov–Smirnov one-sample test to decide if 

the sample of customers surveyed responded with scores approximately matching a 

normal distribution. The survey results are shown in Table 2.5.

TABLE 2.5

Survey results

7 3 3 6

4 4 4 5

5 5 8 9

5 5 5 7

6 8 6 2
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2.5.1.1 State the Null and Research Hypotheses The null hypothesis states 

that the observed sample has an approximately normal distribution. The research 

hypothesis states that the observed sample does not approximately resemble a normal 

distribution.

The null hypothesis is

HO: There is no difference between the observed distribution of survey scores 

and a normally distributed empirical sample.

The research hypothesis is

HA: There is a difference between the observed distribution of survey scores 

and a normally distributed empirical sample.

2.5.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use an α = 0.05 in our example. In other words, there is a 95% 

chance that any observed statistical difference will be real and not due to chance.

2.5.1.3 Choose the Appropriate Test Statistic We are seeking to compare 

our observed sample against a normally distributed empirical sample. The 

Kolmogorov–Smirnov one-sample test will provide this comparison.

2.5.1.4 Compute the Test Statistic First, determine the midpoint and standard 

deviation for the observed sample. Table 2.6 helps to manage the summations for 

this process.

TABLE 2.6

Survey score Score frequency

xi fi fixi f xi i
2

 1 0 0 0

 2 1 2 4

 3 2 6 18

 4 3 12 48

 5 6 30 150

 6 3 18 108

 7 2 14 98

 8 2 16 128

 9 1 9 81

10 0 0 0

n = 20 ∑ =f xi i 107 ∑ =f xi i
2

635
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Use Formula 2.11 to ind the midpoint:

 

M x x

M

= + ÷

= + ÷

=
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.

max min 2

9 2 2
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Then, use Formula 2.12 to ind the standard deviation:
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Now, determine the z-scores, empirical relative frequencies, and observed relative 

frequencies for each score value (see Table 2.7).

TABLE 2.7

Survey score Score frequency Empirical frequency Observed frequency

xi fi z-score p̂xi f̂r fr

 1 0 2.49 0.0064 0.006 0.000

 2 1 1.93 0.0266 0.020 0.050

 3 2 1.38 0.0838 0.064 0.100

 4 3 0.83 0.2033 0.140 0.150

 5 6 0.28 0.3897 0.250 0.300

 6 3 0.28 0.3897 0.250 0.150

 7 2 0.83 0.2033 0.140 0.100

 8 2 1.38 0.0838 0.064 0.100

 9 1 1.93 0.0266 0.020 0.050

10 0 2.49 0.0064 0.006 0.000

We will provide a sample calculation for survey score = 4 as seen in Table 

2.7. Use Formula 2.13 to calculate the z-scores:

 

z
x M

s

z

i=
−

=
−

=

4 5 5

1 81
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.
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Use each z-score and Table B.1 in Appendix B to determine the probability associ-

ated with the each value, p̂xi:

 ˆ .p4 0 2033=

To ind the empirical frequency value f̂r  for each value, subtract its preceding 

value, f̂r−1, from the associated probability value p̂xi. In other words,

 ˆ ˆ ˆf p fr x ri
= − −1

We establish our empirical frequency distribution beginning at the tail, xi = 1, and 

work to the midpoint, xi = 5:

 

ˆ ˆ ˆ . . .

ˆ ˆ ˆ . .

f p f
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r r

r r

1 1 0

2 2 1
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f p f

f p f

r r
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− =

= − = − =

. .

ˆ ˆ ˆ . . .f p fr r

Our empirical frequency distribution is based on a normal distribution, which is 

symmetrical. Therefore, we can complete our empirical frequency distribution by 

basing the remaining values on a symmetrical distribution. Those values are in Table 

2.7.

Now, we ind the values of the observed frequency distribution fr with Formula 

2.14. We provide a sample calculation with survey result =  4. That survey value 

occurs three times:
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Next, we create cumulative frequency distributions using the empirical and observed 

frequency distributions. A cumulative frequency distribution is created by taking a 

frequency and adding all the preceding values. We demonstrate this in Table 2.8.

Now, we ind the absolute value divergence ɶD and D between the cumulative 

frequency distributions. Use Formula 2.15 and Formula 2.16. See the sample calcula-

tion for survey score = 4 as seen in bold in Table 2.9.
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D F S
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= − = −
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TABLE 2.8

Survey score

Relative frequency Cumulative frequency

Empirical Observed Empirical Observed

xi f̂r fr F̂xi Sxi

 1 0.006 0.000 0.006 0.000

 2 0.020 0.050 0.020 + 0.006 = 0.026 0.050 + 0.000 = 0.050

 3 0.064 0.100 0.064 + 0.026 = 0.090 0.100 + 0.050 = 0.150

 4 0.140 0.150 0.140 + 0.090 = 0.230 0.150 + 0.150 = 0.300

 5 0.250 0.300 0.250 + 0.230 = 0.480 0.300 + 0.300 = 0.600

 6 0.250 0.150 0.250 + 0.480 = 0.730 0.150 + 0.600 = 0.750

 7 0.140 0.100 0.140 + 0.730 = 0.870 0.100 + 0.750 = 0.850

 8 0.064 0.100 0.064 + 0.870 = 0.934 0.100 + 0.850 = 0.950

 9 0.020 0.050 0.020 + 0.934 = 0.954 0.050 + 0.950 = 1.000

10 0.006 0.000 0.006 + 0.954 = 0.960 0.000 + 1.000 = 1.000

TABLE 2.9

Survey score

Cumulative frequency Cumulative frequency

Empirical Observed Divergence

xi F̂xi Sxi
ɶD D

 1 0.006 0.000 0.006

 2 0.026 0.050 0.024 0.026

 3 0.090 0.150 0.060 0.040

 4 0.230 0.300 0.070 0.080

*5 0.480 0.600 0.120 *0.180

 6 0.730 0.750 0.020 0.130

 7 0.870 0.850 0.020 0.120

 8 0.934 0.950 0.016 0.084

 9 0.954 1.000 0.046 0.004

10 0.960 1.000 0.040 0.040

To ind the test statistic Z, use the largest value from ɶD and D in Formula 2.17. Table 

2.9 has an asterisk next to the largest divergence. That value is located at survey 

value = 5. It is max , .D Dɶ( )= 0 180:

 

Z n D D

Z

= ( )

=

=

max ,

( . )

.

ɶ

20 0 180

0 805
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2.5.1.5 Determine the p-Value Associated with the Test Statistic The 

Kolmogorov–Smirnov test statistic Z and the Smirnov (1948) formula (see Formula 

2.18, Formula 2.19, Formula 2.20, Formula 2.21, Formula 2.22, and Formula 2.23) 

are used to ind the two-tailed probability estimate p. Since 0.27 ≤ Z < 1, we use 

Formula 2.19 and Formula 2.20:
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2.5.1.6 Compare the p-Value with the Level of Risk (or the Level of 
Signiicance) Associated with the Null Hypothesis The critical value for 

rejecting the null hypothesis is α = 0.05 and the obtained p-value is p = 0.536. If 

the critical value is greater than the obtained value, we must reject the null hypothesis. 

If the critical value is less than the obtained p-value, we must not reject the null 

hypothesis. Since the critical value is less than the obtained value (0.05 < 0.536), 

we do not reject the null hypothesis.

2.5.1.7 Interpret the Results We did not reject the null hypothesis, suggesting 

the customers’ survey ratings of employee friendliness suficiently resembled a 

normal distribution. This means that a parametric statistical procedure may be used 

with this sample.

2.5.1.8 Reporting the Results When reporting the results from the Kolmogorov–

Smirnov one-sample test, we include the test statistic (D), the degrees of freedom 

(which equals the sample size), and the p-value in terms of the level of risk α. Based 

on our analysis, the sample of customers is approximately normal, where 

D(20) = 0.180, p > 0.05.

2.5.2 Performing the Kolmogorov–Smirnov One-Sample 
Test Using SPSS

We will analyze the data from the example earlier using SPSS.

2.5.2.1 Deine Your Variables First, click the “Variable View” tab at the 

bottom of your screen. Then, type the names of your variables in the “Name” 

column. As shown in Figure 2.13, the variable is called “Survey.”
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2.5.2.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen. Type your sample values in the “Survey” column as shown in Figure 2.14.

FIGURE 2.13

FIGURE 2.14

2.5.2.3 Analyze Your Data As shown in Figure 2.15, use the pull-down menus 

to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “1-Sample K- 

S . . .”

Use the arrow button to place your variable with your data values in the box 

labeled “Test Variable List:” as shown in Figure 2.16. Finally, click “OK” to perform 

the analysis.

2.5.2.4 Interpret the Results from the SPSS Output Window SPSS Output 

2.2 provides the most extreme difference (D = 0.176), Kolmogorov–Smirnov Z-test 

statistic (Z = 0.789), and the signiicance (p = 0.562). Based on the results from 

SPSS, the p-value exceeds the level of risk associated with the null hypothesis 

(α =  0.05). Therefore, we do not reject the null hypothesis. In other words, the 

sample distribution is suficiently normal.
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FIGURE 2.15

FIGURE 2.16
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On an added note, differences between the values from the sample problem 

earlier and the SPSS output are likely due to value precision and computational 

round off errors.

2.6 SUMMARY

Parametric statistical tests, such as the t-test and one-way analysis of variance, are 

based on particular assumptions or parameters. Therefore, it is important that you 

examine collected data for its approximation to a normal distribution. Upon doing 

that, you can consider whether you will use a parametric or nonparametric test for 

analyzing your data.

In this chapter, we presented three quantitative measures of sample normality. 

First, we described how to examine a sample’s kurtosis and skewness. Then, we 

described how to perform and interpret a Kolmogorov–Smirnov one-sample test. In 

the following chapters, we will describe several nonparametric procedures for ana-

lyzing data samples that do not meet the assumptions needed for parametric statisti-

cal tests. In the chapter that follows, we will begin by describing a test for comparing 

two unrelated samples.

2.7 PRACTICE QUESTIONS

1. The values in Table 2.10 are a sample of reading-level score for a 9th-grade class. 

They are measured on a ratio scale. Examine the sample’s skewness and kurtosis 

for normality for α = 0.05. Report your indings.

2. Using a Kolmogorov–Smirnov one-sample test, examine the sample of values 

from Table 2.10. Report your indings.

SPSS OUTPUT 2.2
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2.8 SOLUTIONS TO PRACTICE QUESTIONS  

1. SPSS returned the following values:

skewness = −0.904

standard error of the skewness = 0.427

kurtosis = 0.188

standard error of the kurtosis = 0.833

The computed z-scores are as follows:

 zSk =−2 117.

and

 zK = 0 226.

At α = 0.05, the sample’s skewness fails the normality test, while the kurtosis 

passes the normality test. Based on our standard of α =  0.05, this sample of 

reading levels for 9th-grade students is not suficiently normal.

2. SPSS Output 2.3 shows the results from the Kolmogorov–Smirnov one-sample test.

Kolmogorov–Smirnov obtained value = 1.007

Two-Tailed signiicance = 0.263

SPSS OUTPUT 2.3

TABLE 2.10

Ninth-grade reading-level score

8.10 8.20 8.20 8.70 8.70 8.80 8.80 8.90 8.90 8.90

9.20 9.20 9.20 9.30 9.30 9.30 9.40 9.40 9.40 9.40

9.50 9.50 9.50 9.50 9.60 9.60 9.60 9.70 9.70 9.90

According to the Kolmogorov–Smirnov one-sample test with α =  0.05, this 

sample of reading levels for 9th-grade students is suficiently normal.
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CHAPTER 3

COMPARING TWO RELATED 

SAMPLES: THE WILCOXON 

SIGNED RANK AND THE  

SIGN TEST

3.1 OBJECTIVES

In this chapter, you will learn the following items:

• How to compute the Wilcoxon signed rank test.

• How to perform the Wilcoxon signed rank test using SPSS®.

• How to construct a median conidence interval based on the Wilcoxon 

signed rank test for matched pairs.

• How to compute the sign test.

• How to perform the sign test using SPSS.

3.2 INTRODUCTION

Imagine that you give an attitude test to a small group of people. After you deliver some 

type of treatment, say, a daily vitamin C supplement for several weeks, you give that 

same group of people another attitude test. Finally, you compare the two measures 

of attitude to see if there is any type of difference between the two sets of scores.

The two sets of test scores in the previous scenario are related or paired. This is 

because each person was tested twice. In other words, each test score in one group of 

scores has another test score counterpart. The Wilcoxon signed rank test and the sign 

test are nonparametric statistical procedures for comparing two samples that are paired 

or related. The parametric equivalent to these tests goes by names such as the Student’s 

t-test, t-test for matched pairs, t-test for paired samples, or t-test for dependent samples.

In this chapter, we will describe how to perform and interpret a Wilcoxon 

signed rank test and a sign test, using both small samples and large samples. In addition, 

we demonstrate the procedures for performing both tests using SPSS. Finally, we 

offer varied examples of these nonparametric statistics from the literature.

39



40 CHAPTER 3 COMPARING TWO RELATED SAMPLES

3.3 COMPUTING THE WILCOXON SIGNED RANK 
TEST STATISTIC

The formula for computing the Wilcoxon T for small samples is shown in Formula 

3.1. The signed ranks are the values that are used to compute the positive and nega-

tive values in the formula:

 T R R= + −smaller of and Σ Σ  (3.1)

where ΣR+ is the sum of the ranks with positive differences and ΣR− is the sum of 

the ranks with negative differences.

After the T statistic is computed, it must be examined for signiicance. We 

may use a table of critical values (see Table B.3 in Appendix B). However, if the 

numbers of pairs n exceeds those available from the table, then a large sample 

approximation may be performed. For large samples, compute a z-score and use a 

table with the normal distribution (see Table B.1 in Appendix B) to obtain a critical 

region of z-scores. Formula 3.2, Formula 3.3, and Formula 3.4 are used to ind the 

z-score of a Wilcoxon signed rank test for large samples:
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where xT  is the mean and n is the number of matched pairs included in the 

analysis,
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where sT is the standard deviation,
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where z* is the z-score for an approximation of the data to the normal distribution 

and T is the T statistic.

At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups and does not describe the strength of the 

treatment. We can consider the effect size (ES) to determine the degree of association 

between the groups. We use Formula 3.5 to calculate the ES:

 ES
z

n
=  (3.5)

where |z| is the absolute value of the z-score and n is the number of matched pairs 

included in the analysis.

The ES ranges from 0 to 1. Cohen (1988) deined the conventions for ES as 

small = 0.10, medium = 0.30, and large = 0.50. (Correlation coeficient and ES are 

both measures of association. See Chapter 7 concerning correlation for more infor-

mation on Cohen’s assignment of ES’s relative strength.)
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3.3.1 Sample Wilcoxon Signed Rank Test (Small Data 
Samples)

The counseling staff of Clear Creek County School District has implemented a new 

program this year to reduce bullying in their elementary schools. The school district 

does not know if the new program resulted in improvement or deterioration. In order 

to evaluate the program’s effectiveness, the school district has decided to compare 

the percentage of successful interventions last year before the program began with 

the percentage of successful interventions this year with the program in place. In 

Table 3.1, the 12 elementary school counselors, or participants, reported the percent-

age of successful interventions last year and the percentage this year.

TABLE 3.1

Participants

Percentage of successful 

interventions

Last year This year

1 31 31

2 14 14

3 53 50

4 18 30

5 21 28

6 44 48

7 12 35

8 36 32

9 22 23

10 29 34

11 17 27

12 40 42

The samples are relatively small, so we need a nonparametric procedure. Since 

we are comparing two related, or paired, samples, we will use the Wilcoxon signed 

rank test.

3.3.1.1 State the Null and Research Hypotheses The null hypothesis states 

that the counselors reported no difference in the percentages last year and this year. 

The research hypothesis states that the counselors observed some differences between 

this year and last year. Our research hypothesis is a two-tailed, nondirectional 

hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: µD = 0

The research hypothesis is

HA: µD ≠ 0
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3.3.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

3.3.1.3 Choose the Appropriate Test Statistic The data are obtained from 

12 counselors, or participants, who are using a new program designed to reduce 

bullying among students in the elementary schools. The participants reported the 

percentage of successful interventions last year and the percentage this year. We are 

comparing last year’s percentages with this year’s percentages. Therefore, the data 

samples are related or paired. In addition, sample sizes are relatively small. Since 

we are comparing two related samples, we will use the Wilcoxon signed rank test.

3.3.1.4 Compute the Test Statistic First, compute the difference between 

each sample pair. Then, rank the absolute value of those computed differences. Using 

this method, the differences of zero are ignored when ranking. We have done this in 

Table 3.2.

TABLE 3.2

Participant

Percentage of successful 

interventions

Difference

Rank

SignLast year This year Without zero

1 31 31 0 Exclude

2 14 14 0 Exclude

3 53 50 –3 3 –

4 18 30 +12 9 +

5 21 28 +7 7 +

6 44 48 +4 4.5 +

7 12 35 +23 10 +

8 36 32 –4 4.5 –

9 22 23 +1 1 +

10 29 34 +5 6 +

11 17 27 +10 8 +

12 40 42 +2 2 +

Compute the sum of ranks with positive differences. Using Table 3.2, the ranks 

with positive differences are 9, 7, 4.5, 10, 1, 6, 8, and 2. When we add all of the 

ranks with positive difference we get ΣR+ = 47.5.

Compute the sum of ranks with negative differences. The ranks with negative 

differences are 3 and 4.5. The sum of ranks with negative difference is ΣR− = 7.5.

The obtained value is the smaller of the two rank sums. Therefore, the Wil-

coxon is T = 7.5.
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3.3.1.5 Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular 
Statistic Since the sample sizes are small, we use Table B.3 in Appendix B, which 

lists the critical values for the Wilcoxon T. As noted earlier in Table 3.2, the two 

counselors with score differences of zero were discarded. This reduces our sample 

size to n = 10. In this case, we look for the critical value under the two-tailed test 

for n = 10 and α = 0.05. Table B.3 returns a critical value for the Wilcoxon test of 

T = 8. An obtained value that is less than or equal to 8 will lead us to reject our null 

hypothesis.

3.3.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 8 and the obtained value is T = 7.5. If the 

critical value equals or exceeds the obtained value, we must reject the null hypothesis. 

If instead, the critical value is less than the obtained value, we must not reject the 

null hypothesis. Since the critical value exceeds the obtained value, we must reject 

the null hypothesis.

3.3.1.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between last year’s percentages and this year’s percentages. 

In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 

negative difference ranks (ΣR−), the difference is positive, showing a positive impact 

of the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.3.1.8 Reporting the Results When reporting the indings, include the T 

statistic, sample size, and p-value’s relation to α. The directionality of the difference 

should be expressed using the sum of the positive difference ranks (ΣR+) and sum 

of the negative difference ranks (ΣR−).

For this example, the Wilcoxon signed rank test (T = 7.5, n = 12, p < 0.05) 

indicated that the percentage of successful interventions was signiicantly different. 

In addition, the sum of the positive difference ranks (ΣR+ = 47.5) was larger than 

the sum of the negative difference ranks (ΣR− =  7.5), showing a positive impact 

from the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.3.2 Conidence Interval for the Wilcoxon Signed Rank Test

The American Psychological Association (2001) has suggested that researchers 

report the conidence interval for research data. A conidence interval is an inference 

to a population in terms of an estimation of sampling error. More speciically, it 

provides a range of values that fall within the population with a level of conidence 

of 100(1 − α)%.
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A median conidence interval can be constructed based on the Wilcoxon signed 

rank test for matched pairs. In order to create this conidence interval, all of the 

possible matched pairs (Xi,Xj) are used to compute the differences Di =  Xi −  Xj. 

Then, compute all of the averages uij of two difference scores using Formula 3.6. 

There will be a total of [n(n − 1)/2] + n averages.

 u D D i j nij i j= + ≤ ≤ ≤( )/2 1  (3.6)

We will perform a 95% conidence interval using the sample Wilcoxon signed 

rank test with a small data sample (as stated earlier). Table 3.1 provides the values 

for obtaining our conidence interval. We begin by using Formula 3.6 to compute 

all of the averages uij of two difference scores. For example,

 u D D11 1 1 2 3 3 2= + = − +−( ) ( )/ /

 u11 3=−

 u D D12 1 2 2 3 12 2= + = − +( ) ( )/ /

 u12 4 5= .

 u D D13 1 3 2 3 7 2= + = − +( ) ( )/ /

 u13 2=

Table 3.3 shows each value of uij.

TABLE 3.3

−3 12 7 4 23 −4 1 5 10 2

−3 −3 4.5 2 0.5 10 −3.5 −1 1 3.5 −0.5

12 12 9.5 8 17.5 4 6.5 8.5 11 7

7 7 5.5 15 1.5 4 6 8.5 4.5

4 4 13.5 0 2.5 4.5 7 3

23 23 9.5 12 14 16.5 12.5

−4 −4 −1.5 0.5 3 −1

1 1 3 5.5 1.5

5 5 7.5 3.5

10 10 6

2 2

Next, arrange all of the averages in order from smallest to largest. We have 

arranged all of the values for uij in Table 3.4.

The median of the ordered averages gives a point estimate of the population 

median difference. The median of this distribution is 4.5, which is the point estimate 

of the population.

Use Table B.3 in Appendix B to ind the endpoints of the conidence interval. 

First, determine T from the table that corresponds with the sample size and desired 
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conidence such that p = α/2. We seek to ind a 95% conidence interval. For our 

example, n = 10 and p = 0.05/2. The table provides T = 8.

The endpoints of the conidence interval are the Kth smallest and the Kth 

largest values of uij, where K = T + 1. For our example, K = 8 + 1 = 9. The ninth 

value from the bottom is 0.5 and the ninth value from the top is 12.0. Based on these 

indings, it is estimated with 95% conident that the difference of successful inter-

ventions due to the new bullying programs lies between 0.5 and 12.0.

3.3.3 Sample Wilcoxon Signed Rank Test (Large Data 
Samples)

Hearing of Clear Creek School District’s success with their antibullying program, 

Jonestown School District has implemented the program this year to reduce bullying 

in their own elementary schools. The Jonestown School District evaluates their program’s 

effectiveness by comparing the percentage of successful interventions last year before 

the program began with the percentage of successful interventions this year with the program 

in place. In Table 3.5, the 25 elementary school counselors, or participants, reported the 

percentage of successful interventions last year and the percentage this year.

TABLE 3.4

1 –4.0 12 1.0 22 4.0 34 6.5 45 10.0

2 −3.5 13 1.5 23 4.0 35 7.0 46 11.0

3 −3.0 14 1.5 24 4.0 36 7.0 47 12.0

4 −1.5 15 2.0 25 4.5 37 7.0 48 12.0

5 −1.0 15 2.0 26 4.5 38 7.5 49 12.5

6 −1.0 16 2.5 27 4.5 39 8.0 50 13.5

7 −0.5 17 3.0 28 5.0 40 8.5 51 14.0

8 0.0 18 3.0 29 5.5 41 8.5 52 15.0

9 0.5 19 3.0 30 5.5 42 9.5 53 16.5

10 0.5 20 3.5 31 6.0 43 9.5 54 17.5

11 1.0 21 3.5 32 6.0 44 10.0 55 23.0

TABLE 3.5

Participant

Percentage of successful interventions

Last year This year

1 53 50

2 18 43

3 21 28

4 44 48

5 12 35

6 36 32

(Continued)
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We will use the same nonparametric procedure to analyze the data. However, 

use a large sample (n ≥ 20) approximation.

3.3.3.1 State the Null and Research Hypotheses The null hypothesis states 

that the counselors reported no difference in the percentages last year and this year. 

The research hypothesis states that the counselors observed some differences between 

this year and last year. Our research hypothesis is a two-tailed, nondirectional 

hypothesis because it indicates a difference, but in no particular direction.

The null hypothesis is

HO: µD = 0

The research hypothesis is

HA: µD ≠ 0

3.3.3.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

Participant

Percentage of successful interventions

Last year This year

7 22 23

8 29 34

9 17 27

10 10 42

11 38 44

12 37 16

13 19 33

14 37 50

15 28 20

16 15 27

17 25 27

18 38 30

19 40 51

20 30 50

21 23 45

22 41 20

23 31 49

24 28 43

25 14 30

TABLE 3.5 (Continued)
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3.3.3.3 Choose the Appropriate Test Statistic The data are obtained from 

25 counselors, or participants, who are using a new program designed to reduce 

bullying among students in the elementary schools. The participants reported the 

percentage of successful interventions last year and the percentage this year. We are 

comparing last year’s percentages with this year’s percentages. Therefore, the data 

samples are related or paired. Since we are comparing two related samples, we will 

use the Wilcoxon signed rank test.

3.3.3.4 Compute the Test Statistic First, compute the difference between 

each sample pair. Then, rank the absolute value of those computed differences. We 

have done this in Table 3.6.

TABLE 3.6

Participant

Percentage of successful 

interventions

Difference Rank SignLast year This year

1 53 50 −3 3 −

2 18 43 +25 24 +

3 21 28 +7 8 +

4 44 48 +4 4.5 +

5 12 35 +23 23 +

6 36 32 −4 4.5 −

7 22 23 +1 1 +

8 29 34 +5 6 +

9 17 27 +10 11 +

10 10 42 +32 25 +

11 38 44 +6 7 +

12 37 16 −21 20.5 −

13 19 33 +14 15 +

14 37 50 +13 14 +

15 28 20 −8 9.5 −

16 15 27 +12 13 +

17 25 27 +2 2 +

18 38 30 −8 9.5 −

19 40 51 +11 12 +

20 30 50 +20 19 +

21 23 45 +22 22 +

22 41 20 −21 20.5 −

23 31 49 +18 18 +

24 28 43 +15 16 +

25 14 30 +16 17 +
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Compute the sum of ranks with positive differences. Using Table 3.6, when 

we add all of the ranks with positive difference, we get ΣR+ = 257.5.

Compute the sum of ranks with negative differences. The ranks with negative 

differences are 3, 4.5, 9.5, 9.5, 20.5, and 20.5. The sum of ranks with negative dif-

ference is ΣR− = 67.5.

The obtained value is the smaller of these two rank sums. Thus, the Wilcoxon 

T = 67.5.

Since our sample size is larger than 20, we will approximate it to a normal 

distribution. Therefore, we will ind a z-score for our data using a normal approxima-

tion. We must ind the mean xT and the standard deviation sT for the data:

 x
n n

T =
+
=

+( ) ( )1

4

25 25 1

4

 xT =162 5.

and

 s
n n n
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24

33 150

24

 sT = 37 17.

Next, we use the mean, standard deviation, and the T-test statistic to calculate a 

z-score. Remember, we are testing the hypothesis that there is no difference in ranks 

of percentages of successful interventions between last year and this year:

 z
T x

s

T

T

*
. .

.
=
−

=
−67 5 162 5

37 17

 z* .=−2 56

3.3.3.5 Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular 
Statistic Table B.1 in Appendix B is used to establish the critical region of 

z-scores. For a two-tailed test with α = 0.05, we must not reject the null hypothesis 

if −1.96 ≤ z* ≤ 1.96.

3.3.3.6 Compare the Obtained Value to the Critical Value We ind that z* 

is not within the critical region of the distribution, −2.56 < −1.96. Therefore, we 

reject the null hypothesis. This suggests a difference in the percentage of successful 

interventions after the program was implemented.

3.3.3.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between last year’s percentages and this year’s percentages. 

In addition, since the sum of the positive difference ranks (ΣR+) was larger than the 

negative difference ranks (ΣR−), the difference is positive, showing a positive impact 

of the program. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.
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At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups. In other words, the statistical test’s level 

of signiicance does not describe the strength of the treatment. The American Psy-

chological Association (2001), however, has called for a measure of the strength 

called the ES.

We can consider the ES for this large sample test to determine the degree of 

association between the groups. We use Formula 3.5 to calculate the ES. For the 

example, |z| = 2.56 and n = 25:

 ES
z

n
= =

−2 56

25

.

 ES = 0 51.

Our ES for the matched-pair samples is 0.51. This value indicates a high level of 

association between the percentage of successful interventions before and after the 

implementation of the new bullying program.

3.3.3.8 Reporting the Results For this example, the Wilcoxon signed rank test 

(T = 67.5, n = 25, p < 0.05) indicated that the percentage of successful interventions 

was signiicantly different. In addition, the sum of the positive difference ranks 

(ΣR+ = 257.5) was larger than the sum of the negative difference ranks (ΣR− = 67.5), 

showing a positive impact from the program. Moreover, the ES for the matched-pair 

samples was 0.51. Therefore, our analysis provides evidence that the new bullying 

program is providing positive beneits toward the improvement of student behavior 

as perceived by the school counselors.

3.4 COMPUTING THE SIGN TEST

You can analyze related samples more eficiently by reducing values to dichotomous 

results (“yes” or “no”) or (“+” or “−”). The sign test allows you to perform that 

analysis. Our procedure for performing the sign test is based on the method described 

by Gibbons and Chakraborti (2010).

We begin the procedure for performing a sign test by identifying whether each 

set from the related data samples demonstrates a positive difference, a negative dif-

ference, or no difference at all. Then, we ind the sum of the positive differences np 

and the sum of negative differences nn. Cases with no difference are ignored.

We perform the next part of the analysis based on the sum of differences. If 

np + nn = 0, then the one-sided probability is p = 0.5. If 0 < np + nn < 25, then p 

is calculated recursively from the binomial probability function using Formula 3.7. 

Table B.9 in Appendix B includes several factorials to simplify computation:

 P X
n

n X X
p pX n X( )

!

( )! !
( )=

−
⋅ ⋅ − −1  (3.7)

where n = np + nn and p is the probability of event occurrence.

If np + nn ≥ 25, we use Formula 3.8:
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 z
n n n n

n n
c

p n p n

p n

=
− + −

+

max( , ) . ( ) .

.

0 5 0 5

0 5
 (3.8)

Formula 3.8 approximates a binomial distribution to the normal distribution. 

However, the binomial distribution is a discrete distribution, while the normal dis-

tribution is continuous. More to the point, discrete values deal with heights but not 

widths, while the continuous distribution deals with both heights and widths. The 

correction adds or subtracts 0.5 of a unit from each discrete X-value to ill the gaps 

and make it continuous.

The one sided p-value is p1 =  1 − Φ|zc|, where Φ|zc| is the area under the 

respective tail of the normal distribution at zc. The two-sided p-value is p = 2p1.

3.4.1 Sample Sign Test (Small Data Samples)

To present the process for performing the sign test, we are going to use the data 

from Section 3.3.1, which used the Wilcoxon signed rank test. Recall that the sample 

involves 12 members of the counseling staff from Clear Creek County School Dis-

trict who are working on a program to improve response to bullying in the schools. 

The data from Table 3.1 are being reduced to a binomial distribution for use with 

the sign test. The relatively small sample size warrants a nonparametric procedure.

3.4.1.1 State the Null and Research Hypotheses The null hypothesis states 

that the counselors reported no difference between positive or negative interventions 

between last year and this year. In other words, the changes in responses produce a 

balanced number of positive and negative differences. The research hypothesis states 

that the counselors observed some differences between this year and last year. Our 

research hypothesis is a two-tailed, nondirectional hypothesis because it indicates a 

difference, but in no particular direction.

The null hypothesis is

HO: p = 0.5

The research hypothesis is

HA: p ≠ 0.5

3.4.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

3.4.1.3 Choose the Appropriate Test Statistic Recall from Section 3.3.1 that 

the data are obtained from 12 counselors, or participants, who are using a new 

program designed to reduce bullying among students in the elementary schools. The 

participants reported the percentage of successful interventions last year and the 

percentage this year. We are comparing last year’s percentages with this year’s 

percentages. Therefore, the data samples are related or paired. In addition, sample 
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sizes are relatively small. Since we are comparing two related samples, we will use 

the sign test.

3.4.1.4 Compute the Test Statistic First, decide if there is a difference in 

intervention score from year 1 to year 2. Determine if the difference is positive or 

negative and put the sign of the difference in the sign column. If we count the number 

of ties or “0” differences among the group, we ind only two with no difference from 

last year to this year. Ties are discarded.

Now, we count the number of positive and negative differences between last 

year and this year. Count the number of “+” or positive differences. When we look 

at Table 3.7, we see that eight participants showed positive differences, np = 8. Count 

the number of “−” or negative differences. When we look at Table 3.7, we see only 

two negative differences, nn = 2.

TABLE 3.7

Participant

Percentage of successful 

intervention

Sign of differenceLast year This year

1 31 31 0

2 14 14 0

3 53 50 –

4 18 30 +

5 21 28 +

6 44 48 +

7 12 35 +

8 36 32 –

9 22 23 +

10 29 34 +

11 17 27 +

12 40 42 +

Next, we ind the X-score at and beyond where the area under our binomial 

probability function is α = 0.05. Since we are performing a two-tailed test, we use 

0.025 for each tail. We will calculate the probabilities associated with the binomial 

distribution for p = 0.5 and n = 10. We will demonstrate one of the calculations, 

but list the results for each value. To simplify calculation, use the table of factorials 

in Appendix B, Table B.9:

 P X
n

n X X
p pX n X( )

!

( )! !
( )=

−
⋅ ⋅ − −1

 P( )
!

( )! !
. ( . )0

10

10 0 0
0 5 1 0 5

0 10 0=
−

⋅ ⋅ − −
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 P( )
, ,

( , , )( )
.0

3 628 800

3 628 800 0
1 0 000977= ⋅ ⋅

 P( ) .0 0 0010=

 P( ) .1 0 0098=

 P( ) .2 0 0439=

 P( ) .3 0 1172=

 P( ) .4 0 2051=

 P( ) .5 0 2461=

 P( ) .6 0 2051=

 P( ) .7 = 0 1172

 P( ) .8 0 0439=

 P( ) .9 0 0098=

 P( ) .10 0 0010=

Notice that the values form a symmetric distribution with the median at P(5), as 

shown in Figure 3.1. Using this distribution, we ind the p-values for each tail. To 

do that, we sum the probabilities for each tail until we ind a probability equal to or 

greater than α/2 = 0.025. First, calculate P for pluses:

 P( , , ) . . . .8 9 10 0 0439 0 0098 0 0010 0 0547or = + + =

Second, calculate P for minuses:

 P( , , ) . . . .0 1 2 0 0010 0 0098 0 0439 0 0547or = + + =

P(0)
0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

FIGURE 3.1
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Finally, calculate the obtained value p by combining the two tails:

 p P P= + = +( , , ) ( , , ) . .8 9 10 0 1 2 0 0547 0 0547or or

 p= 0 1094.

3.4.1.5 Determine the Critical Value Needed for Rejection of the Null 
Hypothesis In the example in this chapter, the two-tailed probability was 

computed and is compared with the level of risk speciied earlier, α = 0.05.

3.4.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is α =  0.05 and the obtained p-value is 

p = 0.1094. If the critical value is greater than the obtained value, we must reject 

the null hypothesis. If the critical value is less than the obtained value, we do not 

reject the null hypothesis. Since the critical value is less than the obtained value 

(p > α), we do not reject the null hypothesis.

3.4.1.7 Interpret the Results We did not reject the null hypothesis, suggesting 

that no real difference exists between last year’s and this year’s percentages. There 

was no evidence of positive or negative intervention by counselors. These results 

differ from the data’s analysis using the Wilcoxon signed rank test. A discussion 

about statistical power addresses those differences toward the end of this chapter.

3.4.1.8 Reporting the Results When reporting the indings for the sign test, 

you should include the sample size, the number of pluses, minuses, and ties, and the 

probability of getting the obtained number of pluses and minuses.

For this example, the obtained value, p = 0.1094, was greater than the critical 

value, α = 0.05. Therefore, we did not reject the null hypothesis, suggesting that 

the new bullying program is not providing evidence of a change in student behavior 

as perceived by the school counselors.

3.4.2 Sample Sign Test (Large Data Samples)

We are going to demonstrate a sign test with large samples using the data from the 

Wilcoxon signed rank test for large samples in Section 3.3.3. The data from the 

implementation of the bullying program in the Jonestown School District are pre-

sented in Table 3.8. The data are used to determine the effect of the bullying program 

from year 1 to year 2. If there is an increase in successful intervention, we will use 

a “+” to identify the positive difference in response. If there is a decrease in suc-

cessful intervention in the response, we will identify a negative difference with a 

“−.” There are 25 participants in this study.

3.4.2.1 State the Null and Alternate Hypotheses The null hypothesis states 

that there was no positive or negative effect of the bullying program on successful 

intervention. The research hypothesis states that either a positive or negative effect 

exists from the bullying program.



54 CHAPTER 3 COMPARING TWO RELATED SAMPLES

The null hypothesis is

HO: p = 0.5

The research hypothesis is

HA: p ≠ 0.5

3.4.2.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

3.4.2.3 Choose the Appropriate Test Statistic Recall from Section 3.3.3 that 

the data were obtained from 25 counselors, or participants, who were using a new 

program designed to reduce bullying among students in the elementary schools. The 

TABLE 3.8

Participant

Percentage of successful interventions

Last year This year

1 53 50

2 18 43

3 21 28

4 44 48

5 12 35

6 36 32

7 22 23

8 29 34

9 17 27

10 10 42

11 38 44

12 37 16

13 19 33

14 37 50

15 28 20

16 15 27

17 25 27

18 38 30

19 40 51

20 30 50

21 23 45

22 41 20

23 31 49

24 28 43

25 14 30



3.4 COMPUTING THE SIGN TEST 55

participants reported the percentage of successful interventions last year and the 

percentage this year. We are comparing last year’s percentages with this year’s 

percentages. Therefore, the data samples are related or paired. Since we are making 

dichotomous comparisons of two related samples, we will use the sign test.

3.4.2.4 Compute the Test Statistic First, we determine the sign of the 

differences between last year and this year. Table 3.9 includes the column for the 

sign of the difference for each participant. Next, we count the numbers of positive 

and negative differences. We ind six negative differences, nn = 6, and 19 positive 

differences, np = 19.

Since the sample size is n ≥ 25, we will use a z-score approximation of the 

binomial distribution. The binomial distribution becomes an approximation of the 

TABLE 3.9

Participant

Percentage of successful interventions

Last year This year Sign of difference

1 53 50 −

2 18 43 +

3 21 28 +

4 44 48 +

5 12 35 +

6 36 32 −

7 22 23 +

8 29 34 +

9 17 27 +

10 10 42 +

11 38 44 +

12 37 16 −

13 19 33 +

14 37 50 +

15 28 20 −

16 15 27 +

17 25 27 +

18 38 30 −

19 40 51 +

20 30 50 +

21 23 45 +

22 41 20 −

23 31 49 +

24 28 43 +

25 14 30 +
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normal distribution as n becomes large and p is not too close to the 0 or 1 values. 

If this approximation is used, P(Y ≤ k) is obtained by computing the corrected z-

score for the given data that are as extreme or more extreme than the data given:
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Next, we ind the one-sided p-value. Table B.1 is used to establish Φ|zc|.

 p zc1 1 1 0 9918= − = −Φ .

 p1 0 0082= .

We now multiply two times the one-sided p-value to ind the two-sided p-value:

 p p= =2 2 0 00821 ( )( . )

 p= 0 016.

3.4.2.5 Determine the Critical Value Needed for Rejection of the Null 
Hypothesis In the example in this chapter, the two-tailed probability was 

computed and compared with the level of risk speciied earlier, α = 0.05.

3.4.2.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is α =  0.05 and the obtained p-value is 

p = 0.016. If the critical value is greater than the obtained value, we must reject the 

null hypothesis. If the critical value is less than the obtained value, we do not reject 

the null hypothesis. Since the critical value is greater than the obtained value 

(p < α), we reject the null hypothesis.

3.4.2.7 Interpret the Results We rejected the null hypothesis, suggesting that 

there is a real difference between last year’s and this year’s degree of successful 

intervention for the 25 counselors who were in the study.

Analysis was limited to the identiication of the presence of positive “+” or 

negative “−” differences between year 1 and year 2 for each participant. The level 

of signiicance does not describe the strength of the test’s level of signiicance.

3.4.2.8 Reporting the Results When reporting the indings for the sign test, 

you should include the sample size, the number of pluses, minuses, and ties, and the 

probability of getting the obtained number of pluses and minuses.

For this example, the obtained signiicance, p = 0.016, was less than the criti-

cal value, α = 0.05. Therefore, we rejected the null hypothesis, suggesting that the 

number of successful interventions was signiicantly different from year 1 to year 2.
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3.5.2 Type in Your Values

Click the “Data View” tab at the bottom of your screen and type your data under 

the variable names. As shown in Figure 3.3, we are comparing “last_yr” with 

“this_yr.”

FIGURE 3.2

FIGURE 3.3

3.5 PERFORMING THE WILCOXON SIGNED RANK 
TEST AND THE SIGN TEST USING SPSS

We will analyze the small sample examples for the Wilcoxon signed rank test and 

the sign test using SPSS.

3.5.1 Deine Your Variables

First, click the “Variable View” tab at the bottom of your screen. Then, type the 

names of your variables in the “Name” column. As shown in Figure 3.2, we have 

named our variables “last_yr” and “this_yr.”
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3.5.3 Analyze Your Data

As shown in Figure 3.4, use the pull-down menus to choose “Analyze,” “Nonpara-

metric Tests,” “Legacy Dialogs,” and “2 Related Samples . . .”

FIGURE 3.4

In the upper left box, select both variables that you want to compare. Then, 

use the arrow button to place your variable pair in the box labeled “Test Pairs:”. 

Next, check the “Test Type” you wish to perform. In Figure 3.5, we have checked 

“Wilcoxon” and “Sign” to perform both tests. Finally, click “OK” to perform the 

analysis.

3.5.4 Interpret the Results from the SPSS Output Window

SPSS Output 3.1 begins by reporting the results from the Wilcoxon signed rank test. 

The irst output table (called “Ranks”) provides the Wilcoxon T or obtained value. 

From the “Sum of Ranks” column, we select the smaller of the two values. In our 

example, T = 7.5. The second output table (called “Test Statistics”) returns the criti-

cal z-score for large samples. In addition, SPSS calculates the two-tailed signiicance 

(p = 0.041).

Based on the results from SPSS, the number of successful interventions was 

signiicantly different (T = 7.5, n = 12, p < 0.05). In addition, the sum of the posi-

tive difference ranks (ΣR+ = 47.5) was larger than the sum of the negative difference 

ranks (ΣR− = 7.5), demonstrating a positive impact from the program.
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FIGURE 3.5

SPSS OUTPUT 3.1

Next, SPSS Output 3.2 reports the results from the sign test. The irst output table 

(called “Frequencies”) provides the negative differences, positive differences, ties, 

and total comparisons. The second output table (called “Test Statistics”) returns the 

two-tailed signiicance (p = 0.109). Based on the results of the sign test using SPSS, 

the number of successful interventions was not signiicantly different (0.109 > 0.05).
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SPSS OUTPUT 3.2

The notion that the Wilcoxon signed rank test produced signiicant results 

while the sign test did not is addressed next in a brief discussion about statistical 

power.

3.6 STATISTICAL POWER

Comparing our conlicting results from the small sample Wilcoxon signed rank test 

with the sign test presents an opportunity to discuss statistical power. That difference 

is especially visible when comparing the results from the sample problems in Sec-

tions 3.3.1 and 3.4.1 of this chapter. Both sections analyzed the same data; however, 

one section demonstrated a Wilcoxon signed rank test and the other demonstrated 

the sign test.

Notice that the result from the Wilcoxon signed rank test was signiicant, yet 

the result from the sign test was not signiicant. In other words, one test produced 

signiicant results and the other test did not. The reason involves differences in sta-

tistical power.

Nonparametric methods generally have less statistical power compared with 

their parametric equivalents, especially when used in small samples. For instance, a 

test with less statistical power has a smaller chance of detecting a true effect where 

one might actually exist. This difference in statistical power is especially true for 

the sign test (Siegel and Castellan, 1988).

A statistical test’s power depends on several factors: the size of the effect 

(discussed later), level of desired signiicance (α), and sample size. Researchers use 

this information to perform a statistical power analysis before performing the experi-



3.8 SUMMARY 61

ment. This allows the researcher to determine the needed sample size. A quick search 

returns a variety of online power analysis tools. Currently, G*Power is a free tool. 

In addition, Cohen (1988) has provided several tables for inding sample sizes based 

on level of power.

3.7 EXAMPLES FROM THE LITERATURE

To be shown are varied examples of the nonparametric procedures described in this 

chapter. We have summarized each study’s research problem and the researchers’ 

rationale(s) for choosing a nonparametric approach. We encourage you to obtain 

these studies if you are interested in their results.

Boser and Poppen (1978) sought to determine which verbal responses by 

teacher held the greatest potential for improving student–teacher relationships. The 

seven verbal responses were feelings, thoughts, motives, behaviors, encounter/

encouragement, confrontation, and sharing. They used a Wilcoxon signed rank test 

to examine 101 9th-grader responses because the student participants rank ordered 

their responses.

Vaughn et al. (1999) investigated kindergarten teachers’ perceptions of prac-

tices identiied to improve outcomes for children with disabilities transitioning from 

prekindergarten to kindergarten. The researchers compared the paired ratings of 

teachers’ desirability to employ the identiied practices with feasibility using a Wil-

coxon signed rank test. This nonparametric procedure was considered the most 

appropriate because the study’s measure was a Likert-type scale (1 = low, 5 = high).

Rinderknecht and Smith (2004) used a 7-month nutrition intervention to 

improve the dietary self-eficacy of Native American children (5–10 years) and 

adolescents (11–18 years). Wilcoxon signed rank tests were used to determine 

whether fat and sugar intake changed signiicantly between pre- and postintervention 

among adolescents. The researchers chose nonparametric tests for their data that 

were not normally distributed.

Seiver and Hatield (2002) asked environmental health professionals about 

their willingness to dine in certain restaurants based on the method and history of 

health code evaluations. A paired-sample sign test was used to determine which 

health code evaluation method and history that participants preferred. The research-

ers chose a nonparametric test since they administered questionnaires with rank 

ordered scales (0 = never, 10 = always).

3.8 SUMMARY

Two samples that are paired, or related, may be compared using a nonparametric 

procedure called the Wilcoxon signed rank test or the sign test. The parametric 

equivalent to this test is known as the Student’s t-test, t-test for matched pairs, or 

t-test for dependent samples.

In this chapter, we described how to perform and interpret a Wilcoxon signed 

rank test and a sign test, using both small samples and large samples. We also 
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explained how to perform the procedure for both tests using SPSS. Finally, we 

offered varied examples of these nonparametric statistics from the literature. The 

next chapter will involve comparing two samples that are not related.

3.9 PRACTICE QUESTIONS

1. A teacher wished to determine if providing a bilingual dictionary to students with 

limited English proiciency improves math test scores. A small class of students 

(n = 10) was selected. Students were given two math tests. Each test covered the 

same type of math content; however, students were provided a bilingual diction-

ary on the second test. The data in Table 3.10 represent the students’ performance 

on each math test.

TABLE 3.10

Student

Math test without a bilingual 

dictionary

Math test with a bilingual 

dictionary

1 30 39

2 56 46

3 48 37

4 47 44

5 43 32

6 45 39

7 36 41

8 44 40

9 44 38

10 40 46

Use a one-tailed Wilcoxon signed rank test and a one-tailed sign test to determine 

which testing condition resulted in higher scores. Use α =  0.05. Report your 

indings.

2. A research study was done to investigate the inluence of being alone at night on 

the human male heart rate. Ten men were sent into a wooded area, one at a time, 

at night, for 20  min. They had a heart monitor to record their pulse rate. The 

second night, the same men were sent into a similar wooded area accompanied 

by a companion. Their pulse rate was recorded again. The researcher wanted to 

see if having a companion would change their pulse rate. The median rates are 

reported in Table 3.11.

Use a two-tailed Wilcoxon signed rank test and a two-tailed sign test to 

determine which condition produced a higher pulse rate. Use α = 0.05. Report 

your indings.
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TABLE 3.11

Participant Median rate alone Median rate with companion

A 88 72

B 77 74

C 91 80

D 70 77

E 80 71

F 85 83

G 90 80

H 82 91

I 93 86

J 75 69

TABLE 3.12

Participant

Pounds lost

Treatment 1 Treatment 2

1 10 18

2 20 12

3 15 16

4 9 7

5 18 21

6 11 17

7 6 13

8 12 14

3. A researcher conducts a pilot study to compare two treatments to help obese 

female teenagers lose weight. She tests each individual in two different treatment 

conditions. The data in Table 3.12 provide the number of pounds that each par-

ticipant lost.

Use a two-tailed Wilcoxon signed rank test and a two-tailed sign test to determine 

which treatment resulted in greater weight loss. Use α =  0.05. Report your 

indings.

4. Twenty participants in an exercise program were measured on the number of 

sit-ups they could do before other physical exercise (irst count) and the number 

they could do after they had done at least 45  min of other physical exercise 

(second count). Table 3.13 shows the results for 20 participants obtained during 

two separate physical exercise sessions. Determine the ES for a calculated 

z-score.
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5. A school is trying to get more students to participate in activities that will make 

learning more desirable. Table 3.14 shows the number of activities that each of 

the 10 students in one class participated in last year before a new activity program 

was implemented and this year after it was implemented. Construct a 95% median 

conidence interval based on the Wilcoxon signed rank test to determine whether 

the new activity program had a signiicant positive effect on the student 

participation.

TABLE 3.13

Participant First count Second count

1 18 28

2 19 18

3 20 28

4 29 20

5 15 30

6 22 25

7 21 28

8 30 18

9 22 27

10 11 30

11 20 24

12 21 27

13 21 10

14 20 40

15 18 20

16 27 14

17 24 29

18 13 30

19 10 24

20 10 36

TABLE 3.14

Participants Last year This year

1 18 20

2 22 28

3 10 18

4 25 23

5 16 20

6 14 21

7 21 17

8 13 18

9 28 22

10 12 21
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3.10 SOLUTIONS TO PRACTICE QUESTIONS 

1. The results from the analysis are displayed in SPSS Outputs 3.3 and 3.4. Both 

tests report the two-tailed signiicance, but the question asked for the one-tailed 

signiicance. Therefore, divide the two-tailed signiicance by 2 to ind the one-

tailed signiicance.

SPSS OUTPUT 3.3

SPSS OUTPUT 3.4
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The results from the Wilcoxon signed rank test reported a one-tailed signiicance 

of p = 0.201/2 = 0.101. The test results (T = 15.0, n = 10, p > 0.05) indicated 

that the two testing conditions were not signiicantly different.

The results from the sign test reported a one-tailed signiicance of 

p = 0.344/2 = 0.172. These test results (p > 0.05) also indicated that the two 

testing conditions were not signiicantly different.

Therefore, based on this study, the use of bilingual dictionaries on a math 

test did not signiicantly improve scores among limited English proicient 

students.

2. The results from the analysis are displayed in SPSS Outputs 3.5 and 3.6.

SPSS OUTPUT 3.5

The results from the Wilcoxon signed rank test reported a two-tailed signiicance 

of p = 0.092. The test results (T = 11.0, n = 10, p > 0.05) indicated that the 

two conditions were not signiicantly different.

The results from the sign test reported a two-tailed signiicance of p = 0.109. 

These test results (p > 0.05) also indicated that the two testing conditions were 

not signiicantly different.

Therefore, based on this study, the presence of a companion in the woods 

at night did not signiicantly inluence the males’ pulse rates.

3. The results from the analysis are displayed in SPSS Outputs 3.7 and 3.8.

The results from the Wilcoxon signed rank test (T =  10.0, n =  8, p >  0.05) 

indicated that the two treatments were not signiicantly different.
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SPSS OUTPUT 3.6

SPSS OUTPUT 3.7
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SPSS OUTPUT 3.8

The results from the sign test (p > 0.05) also indicated that the two testing condi-

tions were not signiicantly different.

Therefore, based on this study, neither treatment program resulted in a 

signiicantly higher weight loss among obese female teenagers.

4. The results from the analysis are as follows:

 T = 50

 x sr r= =105 26 79and .

 z* .=−2 05

 ES = 0 46.

This is a reasonably high ES which indicates a strong measure of association.

5. For our example, n = 10 and p = 0.05/2. Thus, T = 8 and K = 9. The ninth value 

from the bottom is −1.0 and the ninth value from the top is 7.0. Based on these 

indings, it is estimated with 95% conidence that the difference in students’ 

number of activities before and after the new program lies between −1.0 and 7.0.
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CHAPTER 4

COMPARING TWO UNRELATED 

SAMPLES: THE MANN−WHITNEY 

U-TEST AND THE 

KOLMOGOROV−SMIRNOV  

TWO-SAMPLE TEST

4.1 OBJECTIVES

In this chapter, you will learn the following items:

• How to perform the Mann−Whitney U-test.

• How to construct a median conidence interval based on the difference 

between two independent samples.

• How to perform the Kolmogorov−Smirnov two-sample test.

• How to perform the Mann−Whitney U-test and the Kolmogorov−Smirnov 

two-sample test using SPSS®.

4.2 INTRODUCTION

Suppose a teacher wants to know if his irst-period’s early class time has been reduc-

ing student performance. To test his idea, he compares the inal exam scores of 

students in his irst-period class with those in his fourth-period class. In this example, 

each score from one class period is independent, or unrelated, to the other class 

period.

The Mann−Whitney U-test and the Kolmogorov−Smirnov two-sample test 

are nonparametric statistical procedures for comparing two samples that are inde-

pendent, or not related. The parametric equivalent to these tests is the t-test for 

independent samples.

69
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In this chapter, we will describe how to perform and interpret a Mann−Whitney 

U-test and a Kolmogorov−Smirnov two-sample test. We will demonstrate both small 

samples and large samples for each test. We will also explain how to perform the 

procedure using SPSS. Finally, we offer varied examples of these nonparametric 

statistics from the literature.

4.3 COMPUTING THE MANN−WHITNEY U-TEST 
STATISTIC

The Mann−Whitney U-test is used to compare two unrelated, or independent, 

samples. The two samples are combined and rank ordered together. The strategy is 

to determine if the values from the two samples are randomly mixed in the rank 

ordering or if they are clustered at opposite ends when combined. A random rank 

ordered would mean that the two samples are not different, while a cluster of one 

sample’s values would indicate a difference between them. In Figure 4.1, two sample 

comparisons illustrate this concept.

FIGURE 4.1

Use Formula 4.1 to determine a Mann−Whitney U-test statistic for each of 

the two samples. The smaller of the two U statistics is the obtained value:

 U n n
n n

Ri

i i

i= +
+
−∑1 2

1

2

( )
 (4.1)

where Ui is the test statistic for the sample of interest, ni is the number of values 

from the sample of interest, n1 is the number of values from the irst sample, n2 is 

the number of values from the second sample, and ΣRi is the sum of the ranks from 

the sample of interest.
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After the U statistic is computed, it must be examined for signiicance. We 

may use a table of critical values (see Table B.4 in Appendix B). However, if the 

numbers of values in each sample, ni, exceeds those available from the table, then a 

large sample approximation may be performed. For large samples, compute a z-score 

and use a table with the normal distribution (see Table B.1 in Appendix B) to obtain 

a critical region of z-scores. Formula 4.2, Formula 4.3, and Formula 4.4 are used to 

ind the z-score of a Mann−Whitney U-test for large samples:

 x
n n

U =
1 2

2
 (4.2)

where xU is the mean, n1 is the number of values from the irst sample, and n2 is the 

number of values from the second sample;

 s
n n n n

U =
+ +1 2 1 2 1

12

( )
 (4.3)

where sU is the standard deviation;

 z
U x

s

i U

U

*=
−

 (4.4)

where z* is the z-score for a normal approximation of the data and Ui is the U statistic 

from the sample of interest.

At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups and does not describe the strength of the 

treatment. We can consider the effect size (ES) to determine the degree of association 

between the groups. We use Formula 4.5 to calculate the ES:

 ES
z

n
=  (4.5)

where |z| is the absolute value of the z-score and n is the total number of 

observations.

The ES ranges from 0 to 1. Cohen (1988) deined the conventions for ES as 

small = 0.10, medium = 0.30, and large = 0.50. (Correlation coeficient and ES are 

both measures of association. See Chapter 7 concerning correlation for more infor-

mation on Cohen’s assignment of ES’s relative strength.)

4.3.1 Sample Mann−Whitney U-Test (Small Data Samples)

The following data were collected from a study comparing two methods being used 

to teach reading recovery in the 4th grade. Method 1 was a pull-out program in 

which the children were taken out of the classroom for 30 min a day, 4 days a week. 

Method 2 was a small group program in which children were taught in groups of 

four or ive for 45 min a day in the classroom, 4 days a week. The students were 

tested using a reading comprehension test after 4 weeks of the program. The test 

results are shown in Table 4.1.
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4.3.1.1 State the Null and Research Hypotheses The null hypothesis states 

that there is no tendency of the ranks of one method to be systematically higher or 

lower than the other. The hypothesis is stated in terms of comparison of distributions, 

not means. The research hypothesis states that the ranks of one method are system-

atically higher or lower than the other. Our research hypothesis is a two-tailed, 

nondirectional hypothesis because it indicates a difference, but in no particular 

direction.

The null hypothesis is

HO: There is no tendency for ranks of one method to be signiicantly higher 

(or lower) than the other.

The research hypothesis is

HA: The ranks of one method are systematically higher (or lower) than the 

other.

4.3.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

4.3.1.3 Choose the Appropriate Test Statistic The data are obtained from 

two independent, or unrelated, samples of 4th-grade children being taught reading. 

Both the small sample sizes and an existing outlier in the second sample violate our 

assumptions of normality. Since we are comparing two unrelated, or independent, 

samples, we will use the Mann−Whitney U-test.

4.3.1.4 Compute the Test Statistic First, combine and rank both data samples 

together (see Table 4.2).

Next, compute the sum of ranks for each method. Method 1 is ΣR1 and method 

2 is ΣR2. Using Table 4.2,

 R1 7 8 9 10 11 12 13∑ = + + + + + +

 R1 70∑ =

TABLE 4.1

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

53 17
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and

 R2 1 2 3 4 5 6 14∑ = + + + + + +

 R2 35∑ =

Now, compute the U-value for each sample. For sample 1,

 U n n
n n

R1 1 2
1 1

1

1

2
7 7

7 7 1

2
70 49 28 70= +

+
− = +

+
− = + −∑

( )
( )

( )

 U1 7=

and for sample 2,

 U n n
n n

R2 1 2
2 2

2

1

2
7 7

7 7 1

2
35 49 28 35= +

+
− = +

+
− = + −∑

( )
( )

( )

 U2 42=

The Mann−Whitney U-test statistic is the smaller of U1 and U2. Therefore, U = 7.

4.3.1.5 Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic Since the sample sizes are small (n < 20), we use Table B.4 in Appendix B, 

which lists the critical values for the Mann−Whitney U. The critical values are found 

on the table at the point for n1 = 7 and n2 = 7. We set α = 0.05. The critical value 

for the Mann−Whitney U is 8. A calculated value that is less than or equal to 8 will 

lead us to reject our null hypothesis.

TABLE 4.2

Ordered scores

Rank Score Sample

1 10 Method 2

2 12 Method 2

3 14 Method 2

4 17 Method 2

5 18 Method 2

6 20 Method 2

7 38 Method 1

8 39 Method 1

9 40 Method 1

10 41 Method 1

11 48 Method 1

12 50 Method 1

13 53 Method 1

14 102 Method 2
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4.3.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 8 and the obtained value is U = 7. If the 

critical value equals or exceeds the obtained value, we must reject the null hypoth-

esis. If instead, the critical value is less than the obtained value, we must not reject 

the null hypothesis. Since the critical value exceeds the obtained value, we must 

reject the null hypothesis.

4.3.1.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between the two methods. In addition, since the sum of the 

ranks for method 1 (ΣR1) was larger than method 2 (ΣR2), we see that method 1 had 

signiicantly higher scores.

4.3.1.8 Reporting the Results The reporting of results for the Mann−Whitney 

U-test should include such information as the sample sizes for each group, the U 

statistic, the p-value’s relation to α, and the sums of ranks for each group.

For this example, two methods were used to provide students with reading 

instruction. Method 1 involved a pull-out program and method 2 involved a small 

group program. Using the ranked reading comprehension test scores, the results 

indicated a signiicant difference between the two methods (U = 7, n1 = 7, n2 = 7, 

p < 0.05). The sum of ranks for method 1 (ΣR1 = 70) was larger than the sum of 

ranks for method 2 (ΣR2 = 35). Therefore, we can state that the data support the 

pull-out program as a more effective reading program for teaching comprehension 

to 4th-grade children at this school.

4.3.2 Conidence Interval for the Difference between Two 
Location Parameters

The American Psychological Association (2001) has suggested that researchers 

report the conidence interval for research data. A conidence interval is an inference 

to a population in terms of an estimation of sampling error. More speciically, it 

provides a range of values that fall within the population with a level of conidence 

of 100(1 − α)%.

A median conidence interval can be constructed based on the difference 

between two independent samples. It consists of possible values of differences for 

which we do not reject the null hypothesis at a deined signiicance level of α.

The test depends on the following assumptions:

1. Data consist of two independent random samples: X1, X2, . . . , Xn from one 

population and Y1, Y2, . . . , Yn from the second population.

2. The distribution functions of the two populations are identical except for 

possible location parameters.

To perform the analysis, set up a table that identiies all possible differences for each 

possible sample pair such that Dij = Xi − Yj for (Xi,Yj). Placing the values for X from 

smallest to largest across the top and the values for Y from smallest to largest down 

the side will eliminate the need to order the values of Dij later.
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The sample procedure to be presented later is based on the data from Table 

4.2 (small data sample Mann−Whitney U-test) near the beginning of this chapter.

The values from Table 4.2 are arranged in Table 4.3 so that the method 1 (X) 

scores are placed in order across the top and the method 2 (Y) scores are placed in 

order down the side. Then, the n1n2 differences are calculated by subtracting each Y 

value from each X value. The differences are shown in Table 4.3. Notice that the 

values of Dij are ordered in the table from highest to lowest starting at the top right 

and ending at the bottom left.

We use Table B.4 in Appendix B to ind the lower limit of the conidence 

interval, L, and the upper limit U. For a two-tailed test, L is the wα/2th smallest dif-

ference and U is the wα/2th largest difference that correspond to α/2 for n1 and n2 for 

a conidence interval of (1 − α).

For our example, n1 = 7 and n2 = 7. For α/2 = 0.05/2 = 0.025, Table B.4 

returns wα/2 = 9. This means that the ninth values from the top and bottom mark the 

limits of the 95% conidence interval on both ends. Therefore, L = 19 and U = 36. 

Based on these results, we are 95% certain that the difference in population median 

is between 18 and 36.

4.3.3 Sample Mann−Whitney U-Test (Large Data Samples)

The previous comparison of teaching methods for reading recovery was repeated 

with 5th-grade students. The 5th-grade used the same two methods. Method 1 was 

a pull-out program in which the children were taken out of the classroom for 30 min 

a day, 4 days a week. Method 2 was a small group program in which children were 

taught in groups of four or ive for 45 min a day in the classroom, 4 days a week. 

The students were tested using the same reading comprehension test after 4 weeks 

of the program. The test results are shown in Table 4.4.

4.3.3.1 State the Null and Research Hypotheses The null hypothesis states 

that there is no tendency of the ranks of one method to be systematically higher  

or lower than the other. The hypothesis is stated in terms of comparison of distribu-

tions, not means. The research hypothesis states that the ranks of one method are  

TABLE 4.3

Yj

Xi

38 39 40 41 48 50 53

10 28 29 30 31 38 40 43

12 26 27 28 29 36 38 41

14 24 25 26 27 34 36 39

17 21 22 23 24 31 33 36

18 20 21 22 23 30 32 35

20 18 19 20 21 28 30 33

102 −64 −63 −62 −61 −54 −52 −49
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systematically higher or lower than the other. Our research hypothesis is a two-tailed, 

nondirectional hypothesis because it indicates a difference, but in no particular 

direction.

The null hypothesis is

HO: There is no tendency for ranks of one method to be signiicantly higher 

(or lower) than the other.

The research hypothesis is

HA: The ranks of one method are systematically higher (or lower) than the 

other.

4.3.3.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

TABLE 4.4

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

71 21

30 19

15 100

33 23

47 16

51 82

60 13

59 25

58 24

42 97

11 28

46 9

36 34

27 52

93 70

72 22

57 26

45 8

53 17
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4.3.3.3 Choose the Appropriate Test Statistic The data are obtained from 

two independent, or unrelated, samples of 5th-grade children being taught reading. 

Since we are comparing two unrelated, or independent, samples, we will use the 

Mann−Whitney U-test.

4.3.3.4 Compute the Test Statistic First, combine and rank both data samples 

together (see Table 4.5). Next, compute the sum of ranks for each method. Method 

1 is ΣR1 and method 2 is ΣR2. Using Table 4.5,

TABLE 4.5

Ordered scores

Rank Score Sample

1 8 Method 2

2 9 Method 2

3 10 Method 2

4 11 Method 1

5 12 Method 2

6 13 Method 2

7 14 Method 2

8 15 Method 1

9 16 Method 2

10 17 Method 2

11 18 Method 2

12 19 Method 2

13 20 Method 2

14 21 Method 2

15 22 Method 2

16 23 Method 2

17 24 Method 2

18 25 Method 2

19 26 Method 2

20 27 Method 1

21 28 Method 2

22 30 Method 1

23 33 Method 1

24 34 Method 2

25 36 Method 1

26 38 Method 1

27 39 Method 1

28 40 Method 1

29 41 Method 1

30 42 Method 1

31 45 Method 1

(Continued)
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 R1∑ = 779

and

 R2 496∑ =

Now, compute the U-value for each sample. For sample 1,

 

U n n
n n

R1 1 2
1 1

1

1

2

25 25
25 25 1

2
779 625 325 779

= +
+
−

= +
+
− = + −

∑
( )

( )
( )

 U1 171=

and for sample 2,

 

U n n
n n

R2 1 2
2 2

2

1

2

25 25
25 25 1

2
496 625 325 496

= +
+
−

= +
+
− = + −

∑
( )

( )
( )

 U2 454=

Ordered scores

Rank Score Sample

32 46 Method 1

33 47 Method 1

34 48 Method 1

35 50 Method 1

36 51 Method 1

37 52 Method 2

38 53 Method 1

39 57 Method 1

40 58 Method 1

41 59 Method 1

42 60 Method 1

43 70 Method 2

44 71 Method 1

45 72 Method 1

46 82 Method 2

47 93 Method 1

48 97 Method 2

49 100 Method 2

50 102 Method 2

TABLE 4.5 (Continued)
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The Mann−Whitney U-test statistic is the smaller of U1 and U2. Therefore, U = 171.

Since our sample sizes are large, we will approximate them to a normal dis-

tribution. Therefore, we will ind a z-score for our data using a normal approxima-

tion. We must ind the mean xU and the standard deviation sU for the data:

 x
n n

U = =1 2

2

25 25

2

( )( )

 xU = 312 5.

and

 s
n n n n

U =
+ +

=
+ +

=1 2 1 2 1

12

25 25 25 25 1

12

31 875

12

( ) ( )( )( ) ,

 sU = 51 54.

Next, we use the mean, standard deviation, and the U-test statistic to calculate a z-score. 

Remember, we are testing the hypothesis that there is no difference in the ranks of 

the scores for two different methods of reading instruction for 5th-grade students:

 z
U x

s

i U

U

*
.

.
=

−
=

−171 312 5

51 54

 z* .=−2 75

4.3.3.5 Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic Table B.1 in Appendix B is used to establish the critical region of z-scores. 

For a two-tailed test with α =  0.05, we must not reject the null hypothesis if 

−1.96 ≤ z* ≤ 1.96.

4.3.3.6 Compare the Obtained Value with the Critical Value We ind that 

z* is not within the critical region of the distribution, −2.75 < −1.96. Therefore, 

we reject the null hypothesis. This suggests a difference between method 1 and 

method 2.

4.3.3.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference exists between the two methods. In addition, since the sum of the 

ranks for method 1 (ΣR1) was larger than method 2 (ΣR2), we see that method 1 had 

signiicantly higher scores.

At this point, the analysis is limited to identifying the presence or absence of 

a signiicant difference between the groups. In other words, the statistical test’s level 

of signiicance does not describe the strength of the treatment. The American Psy-

chological Association (2001), however, has called for a measure of the strength 

called the effect size.

We can consider the ES for this large sample test to determine the degree of 

association between the groups. We can use Formula 4.5 to calculate the ES. For the 

example, z = −2.75 and n = 50:
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 ES
z

n
= =

−2 75

50

.

 ES = 0 39.

Our ES for the sample difference is 0.39. This value indicates a medium−high level 

of association between the teaching methods for the reading recovery program with 

5th graders.

4.3.3.8 Reporting the Results For this example, two methods were used to 

provide 5th-grade students with reading instruction. Method 1 involved a pull-out 

program and method 2 involved a small group program. Using the ranked reading 

comprehension test scores, the results indicated a signiicant difference between the 

two methods (U = 171, n1 = 25, n2 = 25, p < 0.05). The sum of ranks for method 

1 (ΣR1 = 779) was larger than the sum of ranks for method 2 (ΣR2 = 496). More-

over, the ES for the sample difference was 0.39. Therefore, we can state that the 

data support the pull-out program as a more effective reading program for teaching 

comprehension to 5th-grade children at this school.

4.4 COMPUTING THE KOLMOGOROV–SMIRNOV 
TWO-SAMPLE TEST STATISTIC

In Chapter 2, we used the Kolmogorov–Smirnov one-sample test to compare a 

sample with the normal distribution. We can use the Kolmogorov–Smirnov two-

sample test to analyze two different data samples for independence. Our data must 

meet two assumptions.

1. Observations X1, . . . , Xm are a random sample from a continuous popula-

tion 1, where the X-values are mutually independent and identically dis-

tributed. Likewise, observations Y1, .  .  . , Yn are a random sample from a 

continuous population 2, where the Y-values are mutually independent and 

identically distributed.

2. The two samples are independent.

We begin by placing the data in a form that will permit us to compute the two- 

sided Kolmogorov–Smirnov test statistic Z. The irst step in this procedure is to 

ind the empirical distribution functions Fm(t) and Gn(t) for the samples of X and 

Y, respectively. Combine and rank order both sets of values. For every real number 

t, let

 F t
X t

m
m( )=

≤number of observed s’

and

 G t
Y t

n
n( )=

≤number of observed s’
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where m is the sample size of X and n the sample size of Y.

Next, use Formula 4.6 to ind each absolute value divergence D between the 

empirical distributions functions:

 D F t G tm n= −( ) ( )  (4.6)

Use the largest divergence Dmax with Formula 4.7 to calculate the Kolmogorov–

Smirnov test statistic Z:

 Z D
mn

m n
=

+
max

 (4.7)

Then, use the Kolmogorov–Smirnov test statistic, Z, and the Smirnov (1948) 

formula (see Formula 4.8, Formula 4.9, Formula 4.10, Formula 4.11, Formula 4.12, and 

Formula 4.13) to ind the two-tailed probability estimate p. This is the same procedure 

shown in Chapter 2 when we performed the Kolmogorov–Smirnov one-sample test:

 if then0 0 27 1≤ < =Z p. ,  (4.8)

 if then0 27 1 1
2 506628 9 25. ,
.

( )≤ < = − + +Z p
Z

Q Q Q  (4.9)

where

 Q e Z= − −1 233701 2.  (4.10)

 if then 1 3 1 2 4 9 16≤ < = − + −Z p Q Q Q Q. , ( )  (4.11)

where

 Q e Z= −2 2
 (4.12)

 if then Z p≥ =3 1 0. ,  (4.13)

Once we have our p-value, we can compare it against our level of risk α to determine 

if the two samples are signiicantly different.

4.4.1 Sample Kolmogorov–Smirnov Two-Sample Test

We will use the data from Section 4.3.1 to demonstrate the Kolmogorov–Smirnov 

two-sample test. Table 4.6 recalls the data from the study involving reading recovery 

in the 4th grade. Method 1 was a program in which children were taken out of the 

TABLE 4.6

Method 1 Method 2

48 14

40 18

39 20

50 10

41 12

38 102

53 17
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classroom for 30 min a day, Monday through Thursday each week. Method 2 was 

a small group program in which the children were taught in groups of no more than 

ive for 45 min a day in the classroom. These small classes were taught Monday 

through Thursday, also. The students were tested using a reading comprehension test 

after 4 weeks of instruction.

4.4.1.1 State the Null and Alternate Hypotheses Let X1, . . . , Xm, and Y1, 

. . . , Yn be independent random samples. The null hypothesis indicates that there is 

no difference between the reading groups X and Y. Our research hypothesis is a 

two-tailed, nondirectional hypothesis because it indicates a difference, but in no 

particular direction.

The null hypothesis is

HO: [F(t) = G(t), for every t]

The research hypothesis is

HA: [F(t) ≠ G(t) for at least one value of t]

4.4.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis We will use α = 0.05 in our example. In other words, there 

is a 95% chance that any observed statistical difference will be real and not due to chance.

4.4.1.3 Choose the Appropriate Test Statistic We are seeking to compare 

two random samples, X and Y. Each sample is mutually independent and identically 

distributed. The X’s and Y’s are mutually independent. The Kolmogorov–Smirnov 

two-sample test will provide this comparison.

4.4.1.4 Compute the Test Statistic Begin by computing the empirical distri-

bution functions for the X and Y samples:

 F t
X t

m
m( )=

≤number of observed s’

and

 G t
Y t

n
n( )=

≤number of observed s’

where m = 7 and n = 7.

We use the data in Table 4.6 and Formula 4.6 to ind each divergence and 

generate Table 4.7.

Next, we ind the largest divergence Dmax. Table 4.7 shows that Dmax = 6/7 = 0.86. 

Now, we use Formula 4.7 to calculate the Kolmogorov–Smirnov test statistic Z:

 Z D
mn

m n
=

+
= ⋅

+
= ⋅ =max ( . )

( )( )
( . ) . ( . )( . )0 86

7 7

7 7
0 86 3 5 0 86 1 87

 Z =1 604.
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TABLE 4.7

Zi F7(Zi) G7(Zi) |F7(Zi) − G7(Zi)|

1 10 0/7 1/7 1/7

2 12 0/7 2/7 2/7

3 14 0/7 3/7 3/7

4 17 0/7 4/7 4/7

5 18 0/7 5/7 5/7

6 20 0/7 6/7 6/7

7 38 1/7 6/7 5/7

8 39 2/7 6/7 4/7

9 40 3/7 6/7 3/7

10 41 4/7 6/7 2/7

11 48 5/7 6/7 1/7

12 50 6/7 6/7 0/7

13 53 7/7 6/7 1/7

14 102 7/7 7/7 0/7

4.4.1.5 Determine the p-Value Associated with the Test Statistic Now, 

we ind the p-value using Formula 4.11 since they satisfy the condition that 

1 ≤ Z < 3.1. We irst need Q using Formula 4.12:

 Q e e eZ= = =− − −2 2 1 604 5 1462 2( )( . ) .

 Q= 0 0058.

Now, we can use Formula 4.11:

 
p Q Q Q Q= − + − = − + −

=

2 2 0 0058 0 0058 0 0058 0 0058

2

4 9 16 4 9 16( ) ( )( . . . . )

( )(00 0058. )

 p= 0 012.

4.4.1.6 Compare the Obtained Value with the Critical Value Needed for 
Rejection of the Null Hypothesis The two-tailed probability, p = 0.012, was 

computed and is now compared with the level of risk speciied earlier, α = 0.05. If 

α is greater than the p-value, we must reject the null hypothesis. If α is less than 

the p-value, we must not reject the null hypothesis. Since α is greater than the p-

value (0.05 > 0.012), we reject the null hypothesis.

4.4.1.7 Interpret the Results We rejected the null hypothesis, suggesting that 

the two methods for teaching reading recovery have signiicantly different effects 

on the learning of students. In studying the results, it appears that method 1 was 

more effective than method 2, in general.
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4.4.1.8 Reporting the Results When reporting the results from the 

Kolmogorov–Smirnov two-sample test, include such information as the sample sizes 

for each group, the D statistic, and the p-value’s relation to α.

For this example, two methods were used to provide students with reading 

instruction. Method 1 involved a pull-out program and method 2 involved a small 

group program. Both methods include seven participants. The results from the 

Kolmogorov–Smirnov two-sample test (D = 0.857, p < 0.05) indicate a signiicant 

difference between the two methods. Therefore, we can state that the data support 

the pull-out program as a more effective reading program for teaching comprehen-

sion to 4th-grade children at this school.

4.5 PERFORMING THE MANN–WHITNEY U-TEST AND 
THE KOLMOGOROV–SMIRNOV TWO-SAMPLE TEST 
USING SPSS

We will analyze the data from the example in Sections 4.3.1 and 4.4.1 using SPSS.

4.5.1 Deine Your Variables

First, click the “Variable View” tab at the bottom of your screen. Then, type the 

names of your variables in the “Name” column. Unlike the related samples described 

in Chapter 2, you cannot simply enter each unrelated samples into a separate column 

to execute the Mann–Whitney U-test or Kolmogorov–Smirnov two-sample test. You 

must use a grouping variable to distinguish each sample. As shown in Figure 4.2, 

the irst variable is the grouping variable that we called “Method.” The second vari-

able that we called “Score” will have our actual values.

FIGURE 4.2

When establishing a grouping variable, it is often easiest to assign each group 

a whole number value. In our example, our groups are “Method 1” and “Method 2.” 

Therefore, we must set our grouping variables for the variable “Method.” First, we 

selected the “Values” column and clicked the gray square, as shown in Figure 4.3. 

Then, we set a value of 1 to equal “Method 1.” Now, as soon as we click the “Add” 

button, we will have set “Method 2” equal to 2 based on the values we inserted 

above.
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FIGURE 4.3

4.5.2 Type in Your Values

Click the “Data View” tab at the bottom of your screen as shown in Figure 4.4. Type 

in the values for both sets of data in the “Score” column. As you do so, type in the 

corresponding grouping variable in the “Method” column. For example, all of the 

values for “Method 2” are signiied by a value of 2 in the grouping variable column 

that we called “Method.”

FIGURE 4.4
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4.5.3 Analyze Your Data

As shown in Figure 4.5, use the pull-down menus to choose “Analyze,” “Nonpara-

metric Tests,” “Legacy Dialogs,” and “2 Independent Samples. . . .”

Use the top arrow button to place your variable with your data values, or 

dependent variable (DV), in the box labeled “Test Variable List:.” Then, use the lower 

arrow button to place your grouping variable, or independent variable (IV), in the 

box labeled “Grouping Variable.” As shown in Figure 4.6, we have placed the 

“Score” variable in the “Test Variable List” and the “Method” variable in the “Group-

ing Variable” box. Click on the “Deine Groups .  .  .” button to assign a reference 

value to your IV (i.e., “Grouping Variable”).

As shown in Figure 4.7, type 1 into the box next to “Group 1:” and 2 in the 

box next to “Group 2:.” Then, click “Continue.” This step references the value labels 

you created when you deined your grouping variable in step 1. Now that the groups 

have been assigned, click “OK” to perform the analysis.

4.5.4 Interpret the Results from the SPSS Output Window

We irst compare the samples with the Mann–Whitney U-test. SPSS Output 4.1 

provides the sum of ranks and sample sizes for comparing the two groups. The 

second output table provides the Mann–Whitney U-test statistic (U =  7.0). As 

described in Figure 4.2, it also returns a similar nonparametric statistic called the 

Wilcoxon W-test statistic (W = 35.0). Notice that the Wilcoxon W is the smaller of 

the two rank sums in the table earlier.

FIGURE 4.5



FIGURE 4.6

FIGURE 4.7

SPSS returns the critical z-score for large samples. In addition, SPSS calculates 

the two-tailed signiicance using two methods. The asymptotic signiicance is more 

appropriate with large samples. However, the exact signiicance is more appropriate 

with small samples or data that do not resemble a normal distribution.

Based on the results from SPSS, the ranked reading comprehension test scores 

of the two methods were signiicantly different (U = 7, n1 = 7, n2 = 7, p < 0.05). 

The sum of ranks for method 1 (ΣR1 = 70) was larger than the sum of ranks for 

method 2 (ΣR2 = 35).

Next, we analyzed the data with the Kolmogorov–Smirnov two-sample test. 

SPSS Output 4.2 provides the most extreme differences, Dmax = 0.857. The second 

output table provides the Kolmogorov–Smirnov two-sample test statistic, Z = 1.604, 

and the two-tailed signiicance, p = 0.012.

The results from the Kolmogorov–Smirnov two-sample test (D  =  0.857, 

p < 0.05) indicate a signiicant difference between the two methods. Therefore, we 
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can state that the data support the pull-out program as a more effective reading 

program for teaching comprehension to 4th-grade children at this school.

4.6 EXAMPLES FROM THE LITERATURE

Listed are varied examples of the nonparametric procedures described in this chapter. 

We have summarized each study’s research problem and researchers’ rationale(s) 

SPSS OUTPUT 4.2

SPSS OUTPUT 4.1
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for choosing a nonparametric approach. We encourage you to obtain these studies 

if you are interested in their results.

Odaci (2007) investigated depression, submissive social behaviors, and fre-

quency of automatic negative thoughts in Turkish adolescents. Obese participants 

were compared with participants of normal weight. After the Shapiro–Wilk statistic 

revealed that the data were not normally distributed, Odaci applied a Mann–Whitney 

U-test to compare the groups.

Bryant and Trockel (1976) investigated the impact of stressful life events on 

undergraduate females’ locus of control. The authors compared accrued life chang-

ing units for participants with internal control against external using the Mann–

Whitney U-test. This nonparametric procedure was selected since the data pertaining 

to stressful life events were ordinal in nature.

Re et al. (2007) investigated the expressive writing of children with attention-

deicit/hyperactivity disorder (ADHD). The authors used a Mann–Whitney U-test 

to compare students showing symptoms of ADHD behaviors with a control group 

of students not displaying such behaviors. After examining their data with a 

Kolmogorov–Smirnov test, the researchers chose the nonparametric procedure due 

to signiicant deviations in the data distributions.

In an effort to understand the factors that have motivated minority students to 

enter the social worker profession, Limb and Organista (2003) studied data from 

nearly 7000 students in California entering a social worker program. The authors 

used a Wilcoxon rank sum test to compare sums of student group ranks. They chose 

this nonparametric test due to a concern that statistical assumptions were violated 

regarding sample normality and homogeneity of variances.

Schulze and Tomal (2006) examined classroom climate perceptions among 

undergraduate students. Since the student questionnaires used an interval scale, they 

analyzed their indings with a Mann–Whitney U-test.

Hegedus (1999) performed a pilot study to evaluate a scale designed to examine 

the caring behaviors of nurses. Care providers were compared with the consumers. 

She used a Wilcoxon rank sum test in her analysis because study participants were 

directed to rank the items on the scale.

The nature of expertise in astronomy was investigated across a broad spec-

trum of ages and experience (Bryce and Blown 2012). For each age and experi-

ence level, the researchers compared groups in New Zealand with respective 

groups in China using several Kolmogorov–Smirnov two-sample tests. In other 

words, each set of the two independent samples were from New Zealand versus 

China. The researchers chose a nonparametric procedure since their data were 

categorized with an ordinal scale.

4.7 SUMMARY

Two samples that are not related may be compared using a nonparametric procedure. 

Examples include the Mann–Whitney U-test (or the Wilcoxon rank sum test) and 

the Kolmogorov–Smirnov two-sample test. The parametric equivalent to these tests 

is known as the t-test for independent samples.
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In this chapter, we described how to perform and interpret the Mann–Whitney 

U-test and the Kolmogorov–Smirnov two-sample test. We demonstrated both small 

samples and large samples for each test. We also explained how to perform the 

procedures using SPSS. Finally, we offered varied examples of these nonparametric 

statistics from the literature. The next chapter will involve comparing more than two 

samples that are related.

4.8 PRACTICE QUESTIONS

1. The data in Table 4.8 were obtained from a reading-level test for 1st-grade children. 

Compare the performance gains of the two different methods for teaching reading.

TABLE 4.8

Method Gain score Method Gain score

One on one 16 Small group 11

One on one 13 Small group 2

One on one 16 Small group 10

One on one 16 Small group 4

One on one 13 Small group 9

One on one 9 Small group 8

One on one 12 Small group 5

One on one 12 Small group 6

One on one 20 Small group 4

One on one 17 Small group 16

TABLE 4.9

No hobby group Hobby group

12 9

15 5

8 10

11 3

9 4

17 2

Use two-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 

determine which method was better for teaching reading. Set α = 0.05. Report 

your indings.

2. A research study was conducted to see if an active involvement in a hobby had 

a positive effect on the health of a person who retires after age 65. The data in 

Table 4.9 describe the health (number of doctor visits in 1 year) for participants 

who are involved in a hobby almost daily and those who are not.
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Use one-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 

determine whether the hobby tends to reduce the need for doctor visits. Set 

α = 0.05. Report your indings.

3. Table 4.10 shows assessment scores of two different classes who are being taught 

computer skills using two different methods.

TABLE 4.10

Method 1 Method 2

53 91

41 18

17 14

45 21

44 23

12 99

49 16

50 10

Use two-tailed Mann–Whitney U and Kolmogorov–Smirnov two-sample tests to 

determine which method was better for teaching computer skills. Set α = 0.05. 

Report your indings.

4. Two methods of teaching reading were compared. Method 1 used the computer 

to interact with the student, and diagnose and remediate the student based on 

misconceptions. Method 2 was taught using workbooks in classroom groups. 

Table 4.11 shows the data obtained on an assessment after 6 weeks of instruction. 

Calculate the ES using the z-score from the analysis.

TABLE 4.11

Method 1 Method 2

27 9

38 42

15 21

85 83

36 110

95 19

93 29

57 40

63 30

81 23

65 18

77 32

59 101

(Continued)
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5. Two methods were used to provide instruction in science for 7th grade. Method 

1 included a laboratory each week and method 2 had only classroom work with 

lecture and worksheets. Table 4.12 shows end-of-course test performance for the 

two methods. Construct a 95% median conidence interval based on the difference 

between two independent samples to compare the two methods.

Method 1 Method 2

89 7

41 50

26 37

102 22

55 71

46 16

82 45

24 35

87 28

66 91

12 86

90 20

TABLE 4.11 (Continued)

TABLE 4.12

Method 1 Method 2

15 8

23 15

9 10

12 13

18 17

22 5

17 18

20 7

4.9 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the analysis are displayed in SPSS Outputs 4.3 and 4.4.

The results from the Mann–Whitney U-test (U = 9, n1 = 10, n2 = 10, p < 0.05) 

indicated that the two methods were signiicantly different. Moreover, the one-

on-one method produced a higher sum of ranks (ΣR1 = 146) than the small group 

method (ΣR2 = 64).

The results from the Kolmogorov–Smirnov two-sample test (D =  1.789, 

p < 0.05) also suggested that the two methods were signiicantly different.
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Therefore, based on both statistical tests, 1st-grade children displayed sig-

niicantly higher reading levels when taught with a one-on-one method.

2. The results from the analysis are displayed in SPSS Outputs 4.5 and 4.6.

The results from the Mann–Whitney U-test (U = 6, n1 = 7, n2 = 6, p < 0.05) 

indicated that the two samples were signiicantly different. Moreover, the sample 

SPSS OUTPUT 4.3

SPSS OUTPUT 4.4
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with no hobby produced a higher sum of ranks (ΣR1 = 64) than the sample with 

a hobby (ΣR2 = 27).

The results from the Kolmogorov–Smirnov two-sample test (D =  1.027, 

p  >  0.05) suggested, however, that the two methods were not signiicantly 

different.

The conlicting results from the two statistical tests prevent us from making 

a conclusive statement about this study. Study replication with larger sample sizes 

is recommended.

SPSS OUTPUT 4.6

SPSS OUTPUT 4.5



4.9 SOLUTIONS TO PRACTICE QUESTIONS 95

3. The results from the analysis are displayed in SPSS Outputs 4.7 and 4.8.

SPSS OUTPUT 4.7

SPSS OUTPUT 4.8

The results from the Mann–Whitney U-test (U = 24, n1 = 8, n2 = 8, p > 0.05) 

and the results from the Kolmogorov–Smirnov two-sample test (D =  1.000, 

p > 0.05) indicated that the two samples were not signiicantly different. There-

fore, based on this study, neither method resulted in signiicantly different assess-

ment scores for computer skills.
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4. The results from the analysis are as follows:

 U U1 2199 426= =and

 xu = 312 5.

 su = 51 54.

 z* .=−2 20
 ES = 0 31.

The ES is moderate.

5. For our example, n1 = 8 and n2 = 8. For 0.05/2 = 0.025, wα/2 = 14. Based on 

these results, we are 95% certain that the median difference between the two 

methods is between 0 and 11.
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CHAPTER 5

COMPARING MORE THAN TWO 

RELATED SAMPLES: THE 

FRIEDMAN TEST

5.1 OBJECTIVES

In this chapter, you will learn the following items:

• How to compute the Friedman test.

• How to perform contrasts to compare samples.

• How to perform the Friedman test and associated sample contrasts using 

SPSS®.

5.2 INTRODUCTION

Most public school divisions take pride in the percentage of their graduates admitted 

to college. A large school division might want to determine if these college admis-

sion rates are changing or stagnant. The division could compare the percentages of 

graduates admitted to college from each of its 10 high schools over the past 5 years. 

Each year would constitute a group, or sample, of percentages from each school. In 

other words, the study would include ive groups, and each group would include 10 

values.

The samples in the example are dependent, or related, since each school has 

a percentage for each year. The Friedman test is a nonparametric statistical procedure 

for comparing more than two samples that are related. The parametric equivalent to 

this test is the repeated measures analysis of variance (ANOVA).

When the Friedman test leads to signiicant results, then at least one of the 

samples is different from the other samples. However, the Friedman test does not 

identify where the difference(s) occur. Moreover, it does not identify how many 

differences occur. In order to identify the particular differences between sample 

pairs, a researcher might use sample contrasts, or post hoc tests, to analyze the 

97
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speciic sample pairs for signiicant difference(s). The Wilcoxon signed rank test 

(see Chapter 3) is a useful method for performing sample contrasts between related 

sample sets.

In this chapter, we will describe how to perform and interpret a Friedman test 

followed with sample contrasts. We will also explain how to perform the procedures 

using SPSS. Finally, we offer varied examples of these nonparametric statistics from 

the literature.

5.3 COMPUTING THE FRIEDMAN TEST STATISTIC

The Friedman test is used to compare more than two dependent samples. When 

stating our hypotheses, we state them in terms of the population. Moreover, we 

examine the population medians, θi, when performing the Friedman test.

To compute the Friedman test statistic Fr, we begin by creating a table of our 

data. List the research subjects to create the rows. Place the values for each condition 

in columns next to the appropriate subjects. Then, rank the values for each subject 

across each condition. If there are no ties from the ranks, use Formula 5.1 to deter-

mine the Friedman test statistic Fr:
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where n is the number of rows, or subjects, k is the number of columns, or condi-

tions, and Ri is the sum of the ranks from column, or condition, i.

If ranking of values results in any ties, use Formula 5.2 to determine the Fried-

man test statistic Fr:
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where n is the number of rows, or subjects, k is the number of columns, or condi-

tions, Ri is the sum of the ranks from column, or condition, i, CF is the ties correction, 
1

4

2
1nk k+( ) , and rij is the rank corresponding to subject j in column i.

The degrees of freedom for the Friedman test is determined by using Formula 5.3:

 df k= −1  (5.3)

Where df is the degrees of freedom and k is the number of groups.

Once the test statistic Fr is computed, it can be compared with a table of criti-

cal values (see Table B.5 in Appendix B) to examine the groups for signiicant dif-

ferences. However, if the number of groups, k, or the number of values in a group, 

n, exceeds those available from the table, then a large sample approximation may 

be performed. Use a table with the χ2 distribution (see Table B.2 in Appendix B) to 

obtain a critical value when performing a large sample approximation.
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If the Fr statistic is not signiicant, then no differences exist between any of 

the related conditions. However, if the Fr statistic is signiicant, then a difference 

exists between at least two of the conditions. Therefore, a researcher might use 

sample contrasts between individual pairs of conditions, or post hoc tests, to deter-

mine which of the condition pairs are signiicantly different.

When performing multiple sample contrasts, the type I error rate tends to 

become inlated. Therefore, the initial level of risk, or α, must be adjusted. We 

demonstrate the Bonferroni procedure, shown in Formula 5.4, to adjust α:

 α
α

B

k
=  (5.4)

where αB is the adjusted level of risk, α is the original level of risk, and k is the 

number of comparisons.

5.3.1 Sample Friedman’s Test (Small Data Samples  
without Ties)

A manager is struggling with the chronic tardiness of her seven employees. She tries 

two strategies to improve employee timeliness. First, over the course of a month, 

she punishes employees with a $10 paycheck deduction for each day that they arrive 

late. Second, the following month, she punishes employees by docking their pay $20 

for each day that they do not arrive on time.

Table 5.1 shows the number of times each employee was late in a given month. 

The baseline shows the employees’ monthly tardiness before the strategies. Month 

1 shows the employees’ monthly tardiness after a month of the $10 paycheck deduc-

tions. Month 2 shows the employees’ monthly tardiness after a month of the $20 

paycheck deductions.

TABLE 5.1

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 13 12

2 10 5 2

3 7 8 9

4 13 11 5

5 17 2 6

6 10 7 9

7 11 6 7

We want to determine if either of the paycheck deduction strategies reduced 

employee tardiness. Since the sample sizes are small (n < 20), we require a non-

parametric test. The Friedman test is the best statistic to analyze the data and test 

the hypothesis.
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5.3.1.1 State the Null and Research Hypotheses The null hypothesis states 

that neither of the manager’s strategies will change employee tardiness. The research 

hypothesis states that one or both of the manager’s strategies will reduce employee 

tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

5.3.1.3 Choose the Appropriate Test Statistic The data are obtained from three 

dependent, or related, conditions that report employees’ number of monthly tardiness. 

The three samples are small with some violations of our assumptions of normality. 

Since we are comparing three dependent conditions, we will use the Friedman test.

5.3.1.4 Compute the Test Statistic First, rank the values from each employee, 

or subject (see Table 5.2).

TABLE 5.2 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 3 2 1

2 3 2 1

3 1 2 3

4 3 2 1

5 3 1 2

6 3 1 2

7 3 1 2

Next, compute the sum of ranks for each condition. The ranks in each group 

are added to obtain a total R-value for the group.

For the baseline condition,

 RB = + + + + + + =3 3 1 3 3 3 3 19

For month 1,

 RM1 2 2 2 2 1 1 1 11= + + + + + + =

For month 2,

 RM2 1 1 3 1 2 2 2 12= + + + + + + =
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These R-values are used to compute the Fr test statistic. Use Formula 5.1 since there 

were no ties involved in the ranking:
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 Fr = 5 429.

5.3.1.5 Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic We will use the critical value table for the Friedman test (see Table B.5 in 

Appendix B) since it includes the number of groups, k, and the number of samples, 

n, for our data. In this case, we look for the critical value for k = 3 and n = 7 with 

α = 0.05. Table B.5 returns a critical value for the Friedman test of 7.14.

5.3.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 7.14 and the obtained value is Fr = 5.429. 

If the critical value is less than or equal to the obtained value, we must reject the 

null hypothesis. If instead, the critical value exceeds the obtained value, we do not 

reject the null hypothesis. Since the critical value exceeds the obtained value, we do 

not reject the null hypothesis.

5.3.1.7 Interpret the Results We did not reject the null hypothesis, suggesting 

that no signiicant difference exists between any of the three conditions. Therefore, 

no further comparisons are necessary with these data.

5.3.1.8 Reporting the Results The reporting of results for the Friedman test 

should include such information as the number of subjects, the Fr statistic, degrees 

of freedom, and p-value’s relation to α.

For this example, the frequencies of employees’ (n = 7) tardiness were com-

pared over three conditions. The Friedman test was not signiicant (Fr(2) =  5.429, 

p >  0.05). Therefore, we can state that the data do not support punishing tardy 

employees with $10 or $20 paycheck deductions.

5.3.2 Sample Friedman’s Test (Small Data Samples with Ties)

After the manager’s failure to reduce employee tardiness with paycheck deductions, 

she decided to try a different approach. This time, she rewarded employees when 

they arrived to work on-time. Again, she tries two strategies to improve employee 

timeliness. First, over the course of a month, she rewards employees with a $10 

bonus for each day that they arrive on-time. Second, the following month, she 

rewards employees with a $20 bonus for each day that they arrive on-time.
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Table 5.3 shows the number of times each employee was late in a given month. 

The baseline shows the employees’ monthly tardiness before any of the strategies 

in either example. Month 1 shows the employees’ monthly tardiness after a month 

of the $10 bonuses. Month 2 shows the employees’ monthly tardiness after a month 

of the $20 bonuses.

We want to determine if either of the strategies reduced employee tardiness. 

Again, since the sample sizes are small (n < 20), we use a nonparametric test. The 

Friedman test is a good statistic to analyze the data and test the hypothesis.

5.3.2.1 State the Null and Research Hypotheses The null hypothesis states 

that neither of the manager’s strategies will change employee tardiness. The research 

hypothesis states that one or both of the manager’s strategies will reduce employee 

tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.2.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

5.3.2.3 Choose the Appropriate Test Statistic The data are obtained from 

three dependent, or related, conditions that report employees’ number of monthly 

tardiness. The three samples are small with some violations of our assumptions of 

normality. Since we are comparing three dependent conditions, we will use the 

Friedman test.

5.3.2.4 Compute the Test Statistic First, rank the values from each employee, 

or subject (see Table 5.4).

TABLE 5.3 

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 17 11

2 10 5 2

3 7 8 0

4 13 9 5

5 17 2 2

6 10 10 9

7 11 6 5



5.3 COMPUTING THE FRIEDMAN TEST STATISTIC 103

Next, compute the sum of ranks for each condition. The ranks in each group 

are added to obtain a total R-value for the group.

For the baseline condition,

 RB = + + + + + + =2 3 2 3 3 2 5 3 18 5. .

For month 1,

 RM1 3 2 3 2 1 5 2 5 2 16= + + + + + + =. .

For month 2,

 RM2 1 1 1 1 1 5 1 1 7 5= + + + + + + =. .

These R-values are used to compute the Fr test statistic. Since there were ties 

involved in the rankings, we must use Formula 5.2. Finding the values for CF and 

Σrij
2 irst will simplify the calculation:

 C nk kF = +( ) =
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To ind Σrij
2, square all of the ranks. Then, add all of the squared ranks together (see 

Table 5.5):
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TABLE 5.4 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 2 3 1

2 3 2 1

3 2 3 1

4 3 2 1

5 3 1.5 1.5

6 2.5 2.5 1

7 3 2 1
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5.3.2.5 Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic We will use the critical value table for the Friedman test (see Table B.5 in 

Appendix B) since it includes the number of groups, k, and the number of samples, 

n, for our data. In this case, we look for the critical value for k = 3 and n = 7 with 

α = 0.05. Table B.5 returns a critical value for the Friedman test of 7.14.

5.3.2.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 7.14 and the obtained value is Fr = 10.23. 

If the critical value is less than or equal to the obtained value, we must reject the 

null hypothesis. If instead, the critical value exceeds the obtained value, we do not 

reject the null hypothesis. Since the obtained value exceeds the critical value, we 

reject the null hypothesis.

5.3.2.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a signiicant difference exists between one or more of the three conditions. In par-

ticular, both strategies seemed to result in less tardiness among employees. However, 

describing speciic differences in this manner is speculative. Therefore, we need a 

technique for statistically identifying difference between conditions, or contrasts.

Sample Contrasts, or Post Hoc Tests The Friedman test identiies if a sta-

tistical difference exists; however, it does not identify how many differences exist 

and which conditions are different. To identify which conditions are different and 

which are not, we use a procedure called contrasts or post hoc tests. An appropriate 

test to use when comparing two related samples at a time is the Wilcoxon signed 

rank test described in Chapter 3.

It is important to note that performing several two-sample tests has a tendency 

to inlate the type I error rate. In our example, we would compare three groups, 

k = 3. At an α = 0.05, the type I error rate would equal 1 − (1 − 0.05)3 = 0.14.

TABLE 5.5 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 4 9 1

2 9 4 1

3 4 9 1

4 9 4 1

5 9 2.25 2.25

6 6.25 6.25 1

7 9 4 1

Σri
2 50.25 38.50 8.25
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To compensate for this error inlation, we demonstrate the Bonferroni proce-

dure (see Formula 5.4). With this technique, we use a corrected α with the Wilcoxon 

signed rank tests to determine signiicant differences between conditions. For our 

example, we are only comparing month 1 and month 2 against the baseline. We are 

not comparing month 1 against month 2. Therefore, we are only making two com-

parisons and k = 2:

 α
α

B

k
= =

0 05

2

.

 αB = 0 025.

When we compare the three samples with the Wilcoxon signed rank tests using αB, 

we obtain the results presented in Table 5.6. Notice that the signiicance is one-tailed, 

or directional, since we were seeking a decline in tardiness.

TABLE 5.6 

Condition comparison Wilcoxon T statistic Rank sum difference One-tailed signiicance

Baseline–Month 1 3.0 18.0 − 3.0 = 15.0 0.057

Baseline–Month 2 0.0 28.0 − 0.0 = 28.0 0.009

Using αB = 0.025, we notice that the baseline–month 1 comparison does not 

demonstrate a signiicant difference (p >  0.025). However, the baseline–month 2 

comparison does demonstrate a signiicant difference (p <  0.025). Therefore, the 

data indicate that the $20 bonus reduces tardiness while the $10 bonus does not.

Note that if you are not comparing all of the samples for the Friedman test, 

then k is only the number of comparisons you are making with the Wilcoxon signed 

rank tests. Therefore, comparing fewer samples will increase the chances of inding 

a signiicant difference.

5.3.2.8 Reporting the Results The reporting of results for the Friedman test 

should include such information as the number of subjects, the Fr statistic, degrees 

of freedom, and p-value’s relation to α.

For this example, the frequencies of employees’ (n = 7) tardiness were com-

pared over three conditions. The Friedman test was signiicant (Fr(2)  =  10.23, 

p < 0.05). In addition, follow-up contrasts using Wilcoxon signed rank tests revealed 

that $20 bonus reduces tardiness, while the $10 bonus does not.

5.3.3 Performing the Friedman Test Using SPSS

We will analyze the data from the example earlier using SPSS.

5.3.3.1 Deine Your Variables First, click the “Variable View” tab at the 

bottom of your screen. Then, type the names of your variables in the “Name” 
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column. As shown in Figure 5.1, we have named our variables “Baseline,” “Month_1,” 

and “Month_2.”

5.3.3.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen and type your data under the variable names. As shown in Figure 5.2, we are 

comparing “Baseline,” “Month_1,” and “Month_2.”

5.3.3.3 Analyze Your Data As shown in Figure 5.3, use the pull-down menus 

to choose “Analyze,” “Nonparametric Tests,” “Legacy Dialogs,” and “K Related 

Samples. . . .”

Select each of the variables that you want to compare and click the button in 

the middle to move it to the “Test Variables:” box as shown in Figure 5.4. Notice 

that the “Friedman” box is checked by default. After the variables are in the “Test 

Variables:” box, click “OK” to perform the analysis.

5.3.3.4 Interpret the Results from the SPSS Output Window The irst 

output table in SPSS Output 5.1 provides the mean ranks of each condition. The 

second output table provides the Friedman test statistic, 10.231. Since this test uses 

FIGURE 5.1

FIGURE 5.2
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FIGURE 5.3

FIGURE 5.4
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a χ2 distribution, SPSS calls the Fr statistic “Chi-Square.” This table also returns the 

number of subjects (n =  7) degrees of freedom (df =  2) and the signiicance 

(p = 0.006).

Based on the results from SPSS, three conditions were compared among 

employees (n = 7). The Friedman test was signiicant (Fr(2) = 10.23, p < 0.05). In 

order to compare individual pairs of conditions, contrasts may be used.

Note that to perform Wilcoxon signed rank tests for sample contrasts, remem-

ber to use your corrected level of risk, αB, when examining your signiicance.

5.3.4 Sample Friedman’s Test (Large Data Samples  
without Ties)

After hearing of the manager’s success, the head ofice transferred her to a larger 

branch ofice. The transfer was strategic because this larger branch is dealing with 

tardiness issues among employees. The manager suggests that she use the same 

successful incentives for employee timeliness. Due to inancial limitations, however, 

she is limited to offering employees smaller bonuses. First, over the course of a 

month, she rewards employees with a $2 bonus for each day that they arrive on-time. 

Second, the following month, she rewards employees with a $5 bonus for each day 

that they arrive on-time.

Table 5.7 shows the number of times each employee was late in a given month. 

The baseline shows the employees’ monthly tardiness before any of the strategies 

in either example. Month 1 shows the employees’ monthly tardiness after a month 

with $2 bonuses. Month 2 shows the employees’ monthly tardiness after a month 

with $5 bonuses.

We want to determine if either of the paycheck bonus strategies reduced employee 

tardiness. Since the sample sizes are large (n > 20), we will use χ2 for the critical value. 

The Friedman test is a good statistic to analyze the data and test the hypothesis.

5.3.4.1 State the Null and Research Hypotheses The null hypothesis states 

that neither of the manager’s strategies will change employee tardiness. The research 

SPSS OUTPUT 5.1
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TABLE 5.7 

Employee

Monthly tardiness

Baseline Month 1 Month 2

1 16 13 12

2 10 5 12

3 7 8 9

4 13 11 5

5 17 2 6

6 10 17 9

7 11 6 7

8 9 8 10

9 12 13 7

10 10 7 8

11 5 8 4

12 11 6 12

13 13 7 6

14 4 6 10

15 10 5 7

16 8 9 6

17 8 3 12

18 15 10 12

19 2 3 11

20 2 4 5

21 10 3 1

22 12 5 6

23 8 12 3

24 11 6 1

25 4 14 5

hypothesis states that one or both of the manager’s strategies will reduce employee 

tardiness.

The null hypothesis is

HO: θB = θM1 = θM2

The research hypothesis is

HA: One or both of the manager’s strategies will reduce employee tardiness.

5.3.4.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.
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5.3.4.3 Choose the Appropriate Test Statistic The data are obtained from 

three dependent, or related, conditions that report employees’ number of monthly tardi-

ness. Since we are comparing three dependent conditions, we will use the Friedman test.

5.3.4.4 Compute the Test Statistic First, rank the values from each employee 

or subject (see Table 5.8).

Next, compute the sum of ranks for each condition. The ranks in each group 

are added to obtain a total R-value for the group.

TABLE 5.8 

Employee

Ranks of monthly tardiness

Baseline Month 1 Month 2

1 3 2 1

2 2 1 3

3 1 2 3

4 3 2 1

5 3 1 2

6 2 3 1

7 3 1 2

8 2 1 3

9 2 3 1

10 3 1 2

11 2 3 1

12 2 1 3

13 3 2 1

14 1 2 3

15 3 1 2

16 2 3 1

17 2 1 3

18 3 1 2

19 1 2 3

20 1 2 3

21 3 2 1

22 3 1 2

23 2 3 1

24 3 2 1

25 1 3 2

For the baseline condition,

 RB = 56

For month 1,

 RM1 46=
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For month 2,

 RM2 48=

These R-values are used to compute the Fr test statistic. Use Formula 5.1 since there 

were no ties involved in the ranking:
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5.3.4.5 Determine the Value Needed for Rejection of the Null Hypoth-
esis Using the Appropriate Table of Critical Values for the Particular Sta-
tistic Since the data are a large sample, we will use the χ2 distribution (see Table 

B.2 found in Appendix B) to ind the critical value for the Friedman test. In this 

case, we look for the critical value for df = 2 and α = 0.05. Using the table, the 

critical value for rejecting the null hypothesis is 5.99.

5.3.4.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 5.99 and the obtained value is Fr = 2.24. 

If the critical value is less than or equal to the obtained value, we must reject the 

null hypothesis. If instead, the critical value exceeds the obtained value, we do not 

reject the null hypothesis. Since the critical value exceeds the obtained value, we do 

not reject the null hypothesis.

5.3.4.7 Interpret the Results We did not reject the null hypothesis, suggesting 

that no signiicant difference exists between one or more of the three conditions. In 

particular, the data suggest that neither strategy seemed to result in less tardiness 

among employees.

5.3.4.8 Reporting the Results The reporting of results for the Friedman test 

should include such information as the number of subjects, the Fr statistic, degrees 

of freedom, and p-value’s relation to α. For this example, the frequencies of employ-

ees’ (n = 25) tardiness were compared over three conditions. The Friedman test was 

not signiicant (Fr(2) = 2.24, p > 0.05). Therefore, we can state that the data do not 

support providing employees with the $2 or $5 paycheck incentive.

5.4 EXAMPLES FROM THE LITERATURE

Varied examples of the nonparametric procedures described in this chapter are to be 

shown later. We have summarized each study’s research problem and researchers’ 
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rationale(s) for choosing a nonparametric approach. We encourage you to obtain 

these studies if you are interested in their results.

Marston (1996) examined teachers’ attitudes toward three models for ser-

vicing elementary students with mild disabilities. He compared special education 

resource teachers’ ratings of the three models (inclusion only, combined ser-

vices, and pull-out only) using a Friedman test. He chose this nonparametric test 

because the teachers’ attitude responses were based on rankings. When the Fried-

man test produced signiicant results, he modiied the α with the Bonferroni 

procedure in order to avoid a ballooned type I error rate with follow-up 

comparisons.

From a Russian high school’s English as a foreign language program, 

Savignon and Sysoyev (2002) examined 30 students’ responses to explicit train-

ing in coping strategies for particular social and cultural situations. Since the 

researchers considered each student a block in a randomized block study, they 

used a Friedman test to compare the 30 students, or groups. A nonparametric 

test was chosen because there were only two possible responses for each strategy 

(1 = strategy was dificult; 0 = strategy was not dificult). When the Friedman 

test produced signiicant results, they used a follow-up sign test to examine each 

pair for differences in response to ind out which of seven strategies were more 

dificult than others.

Cady et al. (2006) examined math teachers beliefs about the teaching and 

learning of mathematics over time. Since their sample size was small (n = 12), they 

used a Friedman test to compare scores of participants’ survey responses. When 

participants’ scores on the surveys differed signiicantly, the researchers performed 

follow-up pairwise analyses with the Wilcoxon signed rank test.

Hardré et al. (2007) sought to determine if computer-based, paper-based, and 

web-based test administrations produce the same results. They compared university 

students’ performance on each of the three test styles. Since normality violations 

were observed, the researchers used a Friedman test to compare correlations of the 

three methods. Follow-up contrast tests were not performed since no signiicant 

differences were observed.

5.5 SUMMARY

More than two samples that are related may be compared using the Friedman test. 

The parametric equivalent to this test is known as the repeated measures ANOVA. 

When the Friedman test produces signiicant results, it does not identify which nor 

how many pairs of conditions are signiicantly different. The Wilcoxon signed rank 

test, with a Bonferroni procedure to avoid type I error rate inlation, is a useful 

method for comparing individual condition pairs.

In this chapter, we described how to perform and interpret a Friedman test 

followed with sample contrasts. We also explained how to perform the procedures 

using SPSS. Finally, we offered varied examples of these nonparametric statistics 

from the literature. The next chapter will involve a nonparametric procedure for 

comparing more than two unrelated samples.
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5.6 PRACTICE QUESTIONS

1. A graduate student performed a pilot study for his dissertation. He wanted to 

examine the effects of animal companionship on elderly males. He selected 10 

male participants from a nursing home. Then he used an ABAB research design, 

where A represented a week with the absence of a cat and B represented a week 

with the presence of a cat. At the end of each week, he administered a 20-point 

survey to measure quality of life satisfaction. The survey results are presented in 

Table 5.9.

TABLE 5.9 

Participants Week 1 Week 2 Week 3 Week 4

1 7 6 8 9

2 9 8 10 7

3 15 18 16 17

4 7 6 8 9

5 7 8 10 11

6 10 14 13 11

7 12 19 11 13

8 7 4 2 5

9 8 7 9 5

10 12 16 14 15

Use a Friedman test to determine if one or more of the groups are signiicantly 

different. Since this is pilot study, use α = 0.10. If a signiicant difference exists, 

use Wilcoxon signed rank tests to identify which groups are signiicantly differ-

ent. Use the Bonferroni procedure to limit the type I error rate. Report your 

indings.

2. A physical education teacher conducted an action research project to examine a 

strength and conditioning program. Using 12 male participants, she measures the 

number of curl ups they could do in 1  min. She measured their performance 

before the programs. Then, she measured their performance at 1 month intervals. 

Table 5.10 presents the performance results.

TABLE 5.10 

Participants

Number of curl ups in one minute

Baseline Month 1 Month 2

1 66 67 69

2 49 50 56

3 51 52 49

(Continued)



114 CHAPTER 5 COMPARING MORE THAN TWO RELATED SAMPLES: THE FRIEDMAN TEST

Use a Friedman test with α = 0.05 to determine if one or more of the groups are 

signiicantly different. The teacher is expecting performance gains, so if a sig-

niicant difference exists, use one-tailed Wilcoxon signed rank tests to identify 

which groups are signiicantly different. Use the Bonferroni procedure to limit 

the type I error rate. Report your indings.

5.7 SOLUTIONS TO PRACTICE QUESTIONS

1. The results from the Friedman test are displayed in SPSS Output 5.2.

Participants

Number of curl ups in one minute

Baseline Month 1 Month 2

4 65 65 69

5 42 43 46

6 38 39 40

7 33 31 39

8 41 41 44

9 46 47 48

10 45 46 46

11 36 33 34

12 51 55 67

TABLE 5.10  (Continued)

SPSS OUTPUT 5.2

According to the data, the results from the Friedman test indicated that the four 

conditions were not signiicantly different (Fr(3) = 2.160, p > 0.10). Therefore, 

no follow-up contrasts are needed.

2. The results from the Friedman test are displayed in SPSS Output 5.3a.
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SPSS OUTPUT 5.3

SPSS OUTPUT 5.4

According to the data, the results from the Friedman test indicated that one or more 

of the three groups are signiicantly different (Fr(2) = 10.978, p < 0.05). Therefore, we 

must examine each set of samples with follow-up contrasts to ind the differences 

between groups. We compare the samples with Wilcoxon signed rank tests. Since 

there are k = 3 groups, use αB = 0.0167 to avoid type I error rate inlation. The results 

from the Wilcoxon signed rank tests are displayed in SPSS Outputs 5.4 and 5.5.
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a. Baseline–Month 1 Comparison. The results from the Wilcoxon signed rank 

test (T = 17.0, n = 12, p > 0.0167) indicated that the two samples were not 

signiicantly different.

b. Month 1–Month 2 Comparison. The results from the Wilcoxon signed rank 

test (T = 6.0, n = 12, p < 0.0167) indicated that the two samples were sig-

niicantly different.

c. Baseline–Month 2 Comparison. The results from the Wilcoxon signed rank 

test (T = 7.0, n = 12, p < 0.0167) indicated that the two samples were sig-

niicantly different.

SPSS OUTPUT 5.5
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CHAPTER 6

COMPARING MORE THAN TWO 

UNRELATED SAMPLES: THE 

KRUSKAL–WALLIS H-TEST

6.1 OBJECTIVES

In this chapter, you will learn the following items.

• How to compute the Kruskal–Wallis H-test.

• How to perform contrasts to compare samples.

• How to perform the Kruskal–Wallis H-test and associated sample contrasts 

using SPSS®.

6.2 INTRODUCTION

A professor asked her students to complete end-of-course evaluations for her 

Psychology 101 class. She taught four sections of the course and wants to 

compare the evaluation results from each section. Since the evaluations were 

based on a ive-point rating scale, she decides to use a nonparametric procedure. 

Moreover, she recognizes that the four sets of evaluation results are independent 

or unrelated. In other words, no single score in any single class is dependent on 

any other score in any other class. This professor could compare her sections 

using the Kruskal–Wallis H-test.

The Kruskal–Wallis H-test is a nonparametric statistical procedure for compar-

ing more than two samples that are independent or not related. The parametric 

equivalent to this test is the one-way analysis of variance (ANOVA).

When the Kruskal–Wallis H-test leads to signiicant results, then at least one 

of the samples is different from the other samples. However, the test does not identify 

where the difference(s) occurs. Moreover, it does not identify how many differences 

occur. In order to identify the particular differences between sample pairs, a researcher 

might use sample contrasts, or post hoc tests, to analyze the speciic sample pairs 

117
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for signiicant difference(s). The Mann–Whitney U-test is a useful method for per-

forming sample contrasts between individual sample sets.

In this chapter, we will describe how to perform and interpret a Kruskal–Wallis 

H-test followed with sample contrasts. We will also explain how to perform the 

procedures using SPSS. Finally, we offer varied examples of these nonparametric 

statistics from the literature.

6.3 COMPUTING THE KRUSKAL–WALLIS  
H-TEST STATISTIC

The Kruskal–Wallis H-test is used to compare more than two independent samples. 

When stating our hypotheses, we state them in terms of the population. Moreover, 

we examine the population medians, θi, when performing the Kruskal–Wallis 

H-test.

To compute the Kruskal–Wallis H-test statistic, we begin by combining all of 

the samples and rank ordering the values together. Use Formula 6.1 to determine an 

H statistic:

 H
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( )  (6.1)

where N is the number of values from all combined samples, Ri is the sum of the 

ranks from a particular sample, and ni is the number of values from the correspond-

ing rank sum.

The degrees of freedom, df, for the Kruskal–Wallis H-test are determined by 

using Formula 6.2:

 df k= −1  (6.2)

where df is the degrees of freedom and k is the number of groups.

Once the test statistic H is computed, it can be compared with a table of 

critical values (see Table B.6 in Appendix B) to examine the groups for signii-

cant differences. However, if the number of groups, k, or the numbers of values 

in each sample, ni, exceed those available from the table, then a large sample 

approximation may be performed. Use a table with the χ2 distribution (see Table 

B.2 in Appendix B) to obtain a critical value when performing a large sample 

approximation.

If ranking of values results in any ties, a tie correction is required. In that case, 

ind a new H statistic by dividing the original H statistic by the tie correction. Use 

Formula 6.3 to determine the tie correction value;
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 (6.3)

where CH is the ties correction, T is the number of values from a set of ties, and N 

is the number of values from all combined samples.
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If the H statistic is not signiicant, then no differences exist between any of 

the samples. However, if the H statistic is signiicant, then a difference exists between 

at least two of the samples. Therefore, a researcher might use sample contrasts 

between individual sample pairs, or post hoc tests, to determine which of the sample 

pairs are signiicantly different.

When performing multiple sample contrasts, the type I error rate tends to 

become inlated. Therefore, the initial level of risk, or α, must be adjusted. We 

demonstrate the Bonferroni procedure, shown in Formula 6.4, to adjust α:

 α
α

B

k
=  (6.4)

where αB is the adjusted level of risk, α is the original level of risk, and k is the 

number of comparisons.

6.3.1 Sample Kruskal–Wallis H-Test (Small Data Samples)

Researchers were interested in studying the social interaction of different adults. 

They sought to determine if social interaction can be tied to self-conidence. The 

researchers classiied 17 participants into three groups based on the social interaction 

exhibited. The participant groups were labeled as follows:

High  =  constant interaction; talks with many different people; initiates 

discussion

Medium = interacts with a variety of people; some periods of isolation; tends 

to focus on fewer people

Low =  remains mostly isolated from others; speaks if spoken to, but leaves 

interaction quickly

After the participants had been classiied into the three social interaction groups, 

they were directed to complete a self-assessment of self-conidence on a 25-point 

scale. Table 6.1 shows the scores obtained by each of the participants, with 25 points 

being an indication of high self-conidence.

TABLE 6.1

Original ordinal self-conidence scores placed 

within social interaction groups

High Medium Low

21 19 7

23 5 8

18 10 15

12 11 3

19 9 6

20 4
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The original survey scores obtained were converted to an ordinal scale prior 

to the data analysis. Table 6.1 shows the ordinal values placed in the social interac-

tion groups.

We want to determine if there is a difference between any of the three groups 

in Table 6.1. Since the data belong to an ordinal scale and the sample sizes are small 

(n <  20), we will use a nonparametric test. The Kruskal–Wallis H-test is a good 

choice to analyze the data and test the hypothesis.

6.3.1.1 State the Null and Research Hypotheses The null hypothesis 

states that there is no tendency for self-conidence to rank systematically higher or 

lower for any of the levels of social interaction. The research hypothesis states that 

there is a tendency for self-conidence to rank systematically higher or lower for at 

least one level of social interaction than at least one of the other levels. We generally 

use the concept of “systematic differences” in the hypotheses.

The null hypothesis is

HO: θL = θM = θH

The research hypothesis is

HA: There is a tendency for self-conidence to rank systematically higher or 

lower for at least one level of social interaction when compared with the 

other levels.

6.3.1.2 Set the Level of Risk (or the Level of Signiicance) Associated with 
the Null Hypothesis The level of risk, also called an alpha (α), is frequently set 

at 0.05. We will use α = 0.05 in our example. In other words, there is a 95% chance 

that any observed statistical difference will be real and not due to chance.

6.3.1.3 Choose the Appropriate Test Statistic The data are obtained from 

three independent, or unrelated, samples of adults who are being assigned to three 

different social interaction groups by observation. They are then being assessed using 

a self-conidence scale with a total of 25 points. The three samples are small with 

some violations of our assumptions of normality. Since we are comparing three 

independent samples, we will use the Kruskal–Wallis H-test.

6.3.1.4 Compute the Test Statistic First, combine and rank the three samples 

together (see Table 6.2).

Place the participant ranks in their social interaction groups to compute the 

sum of ranks Ri for each group (see Table 6.3).

Next, compute the sum of ranks for each social interaction group. The ranks 

in each group are added to obtain a total R-value for the group.

For the high group,

 RH = + + + + + =10 12 13 5 15 16 17 83 5. .

 nH = 6
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For the medium group,

 RM = + + + + =3 7 8 9 13 5 40 5. .

 nM = 5

For the low group,

 RL = + + + + + =1 2 4 5 6 11 29

 nL = 6

These R-values are used to compute the Kruskal–Wallis H-test statistic (see Formula 

6.1). The number of participants in each group is identiied by a lowercase n. The 

total group size in the study is identiied by the uppercase N.

TABLE 6.2 

Original ordinal score Participant rank Social interaction group

3 1 Low

4 2 Low

5 3 Medium

6 4 Low

7 5 Low

8 6 Low

9 7 Medium

10 8 Medium

11 9 Medium

12 10 High

15 11 Low

18 12 High

19 13.5 Medium

19 13.5 High

20 15 High

21 16 High

23 17 High

TABLE 6.3 

Ordinal data ranks

High Medium Low

10 3 1 N = 17

12 7 2

13.5 8 4

15 9 5

16 13.5 6

17 11
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Now, using the data from Table 6.3, compute the H-test statistic using Formula 

6.1:
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H = 9 93.

Since there was a tie involved in the ranking, correct the value of H. First, compute 

the tie correction (see Formula 6.2). Then, divide the original H statistic by the ties 

correction CH:
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 CH = 0 9988.

Next, we divide to ind the corrected H statistic:

 corrected originalH H CH= ÷ = ÷ =9 93 0 9988 9 94. . .

For this set of data, notice that the corrected H does not differ greatly from the 

original H. With the correction, H = 9.94.

6.3.1.5 Determine the Value Needed for Rejection of the Null Hypothesis 
Using the Appropriate Table of Critical Values for the Particular Statistic We 

will use the critical value table for the Kruskal–Wallis H-test (see Table B.6 in 

Appendix B) since it includes the number of groups, k, and the numbers of samples, 

n, for our data. In this case, we look for the critical value for k =  3 and n1 =  6, 

n2 = 6, and n3 = 5 with α = 0.05. Table B.5 returns a critical value for the Kruskal–

Wallis H-test of 5.76.

6.3.1.6 Compare the Obtained Value with the Critical Value The critical 

value for rejecting the null hypothesis is 5.76 and the obtained value is H = 9.94. 

If the critical value is less than or equal to the obtained value, we must reject the 

null hypothesis. If instead, the critical value exceeds the obtained value, we do not 

reject the null hypothesis. Since critical value is less than the obtained value, we 

must reject the null hypothesis.

At this point, it is worth mentioning that larger samples often result in more 

ties. While comparatively small, as observed in step 4, corrections for ties can make 

a difference in the decision regarding the null hypothesis. If the H were near the 

critical value of 5.99 for df = 2 (e.g., H = 5.80), and the tie correction calculated 

to be 0.965, the decision would be to reject the null hypothesis with the correction 

(H = 6.01), but to not reject the null hypothesis without the correction. Therefore, 

it is important to perform tie corrections.
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6.3.1.7 Interpret the Results We rejected the null hypothesis, suggesting that 

a real difference in self-conidence exists between one or more of the three social 

interaction types. In particular, the data show that those who were classiied as itting 

the deinition of the “low” group were mostly people who reported poor self-

conidence, and those who were in the “high” group were mostly people who 

reported good self-conidence. However, describing speciic differences in this 

manner is speculative. Therefore, we need a technique for statistically identifying 

difference between groups, or contrasts.

Sample Contrasts, or Post Hoc Tests The Kruskal–Wallis H-test identiies 

if a statistical difference exists; however, it does not identify how many differences 

exist and which samples are different. To identify which samples are different and 

which are not, we can use a procedure called contrasts or post hoc tests. Methods 

for comparing two samples at a time are described in Chapters 3 and 4. The examples 

in this chapter compare unrelated samples so we will use the Mann–Whitney 

U-test.

It is important to note that performing several two-sample tests has a tendency 

to inlate the type I error rate. In our example, we would compare three groups, 

k = 3. At α = 0.05, the type I error rate would be 1 − (1 − 0.05)3 = 0.14.

To compensate for this error inlation, we demonstrate the Bonferroni proce-

dure (see Formula 6.4). With this technique, we use a corrected α with the Mann–

Whitney U-tests to determine signiicant differences between samples. For our 

example,

 α
α

B

k
= =

0 05

3

.

 αB = 0 0167.

When we compare each set of samples with the Mann–Whitney U-tests and use αB, 

we obtain the following results presented in Table 6.4.

TABLE 6.4 

Group comparison Mann–Whitney U statistic Rank sum difference Signiicance

High–medium 2.5 48.5 − 17.5 = 31.0 0.017

Medium–low 7.0 38.0 − 28.0 = 10.0 0.177

High–low 1.0 56.0 − 22.0 = 34.0 0.004

Since αB = 0.0167, we notice that the high–low group comparison is indeed 

signiicantly different. The medium–low group comparison is not signiicant. The 

high–medium group comparison requires some judgment since it is dificult to tell 

if the difference is signiicant or not; the way the value is rounded off could change 

the result.
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Note that if you are not comparing all of the samples for the Kruskal–Wallis 

H-test, then k is only the number of comparisons you are making with the Mann–

Whitney U-tests. Therefore, comparing fewer samples will increase the chances of 

inding a signiicant difference.

6.3.1.8 Reporting the Results The reporting of results for the Kruskal–Wallis 

H-test should include such information as sample size for all of the groups, the H 

statistic, degrees of freedom, and p-value’s relation to α. For this example, three social 

interaction groups were compared: high (nH =  6), medium (nM =  5), and low 

(nL = 6). The Kruskal–Wallis H-test was signiicant (H(2) = 9.94, p < 0.05). In order to 

compare each set of samples, contrasts may be used as described earlier in this chapter.

6.3.2 Performing the Kruskal–Wallis H-Test Using SPSS

We will analyze the data from the example earlier using SPSS.

6.3.2.1 Deine Your Variables First, click the “Variable View” tab at the bottom 

of your screen. Then, type the names of your variables in the “Name” column. Unlike 

the Friedman’s ANOVA described in Chapter 5, you cannot simply enter each sample 

into a separate column to execute the Kruskal–Wallis H-test. You must use a group-

ing variable. In Figure 6.1, the irst variable is the grouping variable that we called 

“Group.” The second variable that we called “Score” will have our actual values.

FIGURE 6.1

When establishing a grouping variable, it is often easiest to assign each group 

a whole number value. In our example, our groups are “High,” “Medium,” and 

“Low.” Therefore, we must set our grouping variables for the variable “Group.” First, 

we selected the “Values” column and clicked the gray square as shown in Figure 

6.2. Then, we set a value of 1 to equal “High,” a value of 2 to equal “Medium,” and 

a value of 3 equal to “Low.” Each value label is established and moved to the list 

when we click the “Add” button. Once we click the “OK” button, we are returned 

to the SPSS Variable View.

6.3.2.2 Type in Your Values Click the “Data View” tab at the bottom of your 

screen as shown in Figure 6.3. Type in the values for all three samples in the “Score” 

column. As you do so, type in the corresponding grouping variable in the “Group” 

column. For example, all of the values for “High” are signiied by a value of 1 in 

the grouping variable column that we called “Group.”
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