Chapter 7 (adopted to be CHG6)

!'_ Eigenvalues and Eigenvectors

7.1 Eilgenvalues, Eigenvectors & Eigenspaces

7.2 Diagonalization



Introduction to Eigenvalue Problem

Eigenvalue problem:

If A IS an nxn matrix, do there exist nx1 nonzero matrices X

such that Ax is a scalar multiple of x ?

Eigenvalue and eigenvector:

A : an nxn matrix

a nx1 nonzero column matrix

A+ ascalar
Kl
Eigenvalue
AX = AX

I

I

Eigenvector

(The fundamental equation for
the Eigenvalue problem)
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Ex 1: (Verifying eigenvalues and eigenvectors)

£l

Eigenvalue

wofy THEH]

I
Eigenvector

Eigenvalue

et LH A o

I
Eigenvector
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= Question:
Given an nxn matrix A, how can you find the eigenvalues and
corresponding eigenvectors?

= Note:
Ax=Ax = (AUl-A)x=0 (homogeneous system)
If (A1 — A)x =0 has nonzero solutions if det(Al—A)=0

= Characteristic equation of AeM__ ..

nxn*

det(Al — A) =|[(A1-A) =" +c, A"+ +cA+c, =0
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= Ex 2: (Finding eigenvalues and eigenvectors)

s 3

Sol: Characteristic equation:
A-1 -4
-2 1-3
=A-41-5=(1-51+1) =0

Al - A =

—ws =5 =~

Eigenvalues: 4, =54, =-1
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Eigenvectors:

e FIF
v L } NI

2 SO K e SR
AL HK

Gives x,=-2x, then {Xl} { } t 21 t=0
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= EXx 3: (Finding eigenvalues and eigenvectors)

TR e 5
A et 2T E T,
o 1 (R
Sol: Characteristic equation: You will find
T 157 ¥ 2 /
AM-A=|-1 A-2 -U£A-D(A+D(~A-3)=0
1 1 A

Theeigenvalues: 4, =1, 4, =-1, 4, =3

6/38



= 11— A=
x | [-2t
X, |=| t
Xz | | 1
=>AlI-A=
By A2
X, |=|—t
o S

0
-1
1

—> elgenvectors: t

—2
—
1

—> eigenvectors: t

means reduced to:
(since syst is homogeneous (41-4)x=0)

]
L Tar e (i
.

-2 2
=5 =l
i

L WD
0 3% 5
A0 O

10

120

No constraints
on X,
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2 -2 2] (1 0 2
o S T I (T T |
1 8 IR [0=10850]
o
= eigenvectors: t| -1|t=0
1
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7.1 Reminder and Eigenspaces

= Eigenvalue problem:

If A IS an nxn matrix, do there exist nonzero vectors X in R"

such that Ax is a scalar multiple of x ?

« Eigenvalue and eigenvector:

A : an nxn matrix
A : a scalar
X

a nonzero vector in R” X X

Eigenvalue

|

Ax—Ax

I

Eigenvector

I

« Geometrical Interpretation

5

=
.
Ax=Ax, A>0 Ax= Ax, A<0

consider a geometric interpretation in RZ .
If A is an eigenvalue of a matrix A and x is an eigenvector of A
corresponding to A, then multiplication of x by the matrix A

produces a vector Ax that is parallel to x, as shown in the figures.
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« Ex 1. (Verifying eigenvalues and eigenvectors)

A 2,30 1 0
- [ h e h I — =
A- Verify that Nl as eigenvectors X, [ O} X, [ 1}

Eligenvalue

2 0|1 2 1
I
Eigenvector

Eigenvalue

wcfy S

I
Eigenvector
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« Ex 1. (Verifying eigenvalues and eigenvectors)

1 -2 1
B- Verifythat [0 0 0| haseigenvectors x, =(—3,—1,1) and x,=(1,0,0)
0 | |

Multiplying x, on the left by A produces

<t R

So, x, = (—3, —1, 1} is an eigenvector of A corresponding to the eigenvalue A, = 0.
Similarly, multiplying x, on the left by A produces

<

So, x, = (1, 0, 0) is an eigenvector of A corresponding to the eigenvalue A, = 1.
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- Thm 7.1: (The Eigenspace of A corresponding to A)

If A Is an nxn matrix with an eigenvalue A, then the set of all
eigenvectors of A together with the zero vector is a subspace of

RN . {x: x is an eigenvector of 1} U {0}
This subspace is called the Eigenspace of A .

Pf:  x, and x, are eigenvectors corresponding to A
(lLe. Ax, =X, AX, = AX,)
(D) A(X, +X,) = AX, + AX, = AX + AX, = A(X +X,)
(l.e. X, +X, IS an eigenvector corresponding to 1)
(2) A(cx,) = C(Ax,) = C(Ax,) = A(cx,)
(1.e. cx, IS an eigenvector corresponding to A)
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= EX 3: (An example of eigenspaces in the plane)

Find the eigenvalues and corresponding eigenspaces of
-1 0
A=
ot
If  v=(XY)

-1 O|| X = Geometrically, multiplying a vector (X,
Av = = —> vy) in R2 by the matrix A corresponds

Sol:

0 1|y y to a reflection in the y-axis.
For a vector on the x-axis I "
Eigenvalue A,=-1
- 1 O X — X X Reminder:
— det(Al — 4)=0 gives eigenvalues: -1 and 1
O 1 O O O Then for each eigenvalue we get eigenvector using
(Al-A)x =[]
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For a vector on the y-axis Eigenvalue 12 =1
-1 0]fo] [o] ko
0 1)ly] Lly|“Yy el

Geometrically, multiplying a vector (X, y)
in R by the matrix A corresponds to a

reflection in the y-axis.

The eigenspace corresponding to 4, = -1 Is the x-axis.

The eigenspace corresponding to A, =1 Is the y-axis.
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« Thm 7.2: (Finding eigenvalues and eigenvectors of a matrix AeM,,)
Let A be an nxn matrix.

(1) An eigenvalue of A'is a scalar A such that det(Al—A)=0.

(2) The eigenvectors of A corresponding to A are the nonzero

solutions of (Al1-A)x=0.
= Note:
Ax=1x = (U-A)x=0 (homogeneous system)

If (11— A)x =0 has nonzero solutions if det(Al—-A)=0
«» Characteristic polynomial of AeM__.:

det(Al — A) =|(A - A)|= 2" +c, A+ +CA+C,
= Characteristic equation of A:
det(A1-A)=0
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= EX 4: (Finding eigenvalues and eigenvectors)
2 -12
L
1 -5

Sol: Characteristic equation:

o=/ W)
det(Al — A) =
-1 A+5
=SS 1 e (e (PR =)
—>A=-1-2

Eigenvalues: 4, =-1, 1, =-2
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WA, =-1 = & EOR T i2uli £ 0
g

-3 12 1 -4 X, 4t 4
5 then = = LN aast=al)
-1 4 0 O X, t 1
Equivalent to: X, -4X,=0 /

0x, + 0x, =0 (no constraints)

A -4 12| x| |0
()4, =2 = (LI- )X{—l JLJ_ o}
{—4 12} {1 —3} {xl_ {31 {3}
= = = =t |, t=0
-1 3 R0 X, | |t 1

Check : Ax=AXx
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Details on the solution:
So, the characteristic equation is (A + 1)(A + 2) = 0, which gives A, = —1 and
= A, = —2 as the eigenvalues of A. To find the corresponding eigenvectors, solve
the homogeneous linear system represented by (Al — A)x = 0 twice: first for
A=A, = —1,and then for A = A, = —2. For A, = — 1, the coefficient matrix is

SR I B

1 —4
0 0
conclude that every eigenvector of A, is of the form

[ [4- o

For A, = —2, you have

R R B R I |

which row reduces to [ } showing that x;, — 4x, = 0. Letting x, = f, you can

Letting x, = 7, you can conclude that every eigenvector of A, is of the form

[i]- [ ) o
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- Ex 5: (Finding eigenvalues and eigenvectors)

Find the eigenvalues and corresponding eigenvectors for
the matrix A. What is the dimension of the eigenspace of

each eigenvalue?

A—

Sol: Characteristic equation:

Al - Al =

Rl

0 2
TORG
AL

0
0

&
0
2_

— 1.
A=2
0

Eigenvalue: 4 =2

0
0
A—=2

=(1-2)*=0
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The eigenspace of A correspondingto 4 — 2:

(Al -A)x =

Thus, the dimension of its eigenspace Is 2.

0 -1 O]
0O 0 O

Lo = Ly A

=0

0

0
X

1

N

X
X

3

O+t

Of s,t#0

s,t € R;:theeigenspaceof A corresponding to A =2
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= Notes:

(1) If an eigenvalue A, occurs as a multiple root (k times) for
the characteristic polynominal, then 4, has multiplicity k.

(2) The multiplicity of an eigenvalue Is greater than or equal
to the dimension of its eigenspace.
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« EX 6 © Find the eigenvalues of the matrix A and find a basis

for each of the corresponding eigenspaces.

R O, N
0 1 5 -10
45 i ONRD Ve
M, GO By

Sol: Characteristic equation:

A-1 0 0 0
O Al 268 S0
-1 O A= 270
-1 0 0 A1-3

=(A-1)°(1-2)(1-3)=0
Eigenvalues: 4, =1, 1, =2, 4, =3

Al — Al =
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OGN G "€

D4 =1

0
=5
-1

= (41 -A)X =

e
10

e

=

O3 eV A S IoP =

QL GO O
CIky [OOSR &

0 O
0 O
-1 0
=l

0
-9
—1.

0

Do

N

X X X
o

~

0
10
0

_2__

— 2t

2t

X

N

X X X
S

D

|
o O O O

CDCDI—‘C)I

+1

> 1S a basis for the eigenspace
of A corresponding to 4 =1

msiik=0
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(3)/13:3 2%1,0 0 0 X, 0
0 2 -5 10| x, 0
= (L1 -A)x = —
YO 0% D0 0
i 0 S T U | 6l PO
28 -0 Gada0 AT R0H0 204V Sl A R0 3 O
08 20 SR 010 TR[(FO R0 5 X, — bt -5
~ :> = :t ,t¢0
=120 =0 0 010 Xe 0 0
e VS R 0 Y 0 ol Ol Al Ol R Al o] R | IR
(— O ="
s P _ :
=% . > IS a basis for the eigenspace
of A correspondingto A =3
1
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= Thm 7.3: (Eigenvalues of triangular matrices)
If A'is an nxn triangular matrix, then its eigenvalues are
the entries on its main diagonal.

« EX 7: (Finding eigenvalues for diagonal and triangular matrices)

. I A
2 00 07 Ml O B0
(o e Rty 8 R e R S e TS
0 TOW0. MG
B S NI A e
Sol: A—=2 0 0
@ A-A=l 1 i-1 0 [=(1-2)A-1D(1+3)
L Loty e T e
W) i
(i e e ) ) S
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Keywords in Section 7.1:

eigenvalue problem: 413 el Allus
eigenvalue; 413 4as

eigenvector: (> 4

characteristic polynomial: 3 jeell 2 53a1) 32327
characteristic equation: 3 jesll 4lalasl)
eigenspace: (2 slad

multiplicity: 43225
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7.2 Diagonalization

= Diagonalization problem:

For a square matrix A, does there exist an invertible matrix P
such that P-*AP is diagonal?

= Diagonalizable matrix:

a square matrix A is called diagonalizable if there exists an
invertible matrix P such that P-*AP is a diagonal matrix.

(we say: P diagonalizes A)
= Notes:

(1) If there exists an invertible matrix P such that g = p~*AP,
then two square matrices A and B are called similar.

(2) The eigenvalue problem is closely related to the
diagonalization problem.
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= Thm 7.4: (Similar matrices have the same eigenvalues)

Pf:

If A and B are similar nxn matrices, then they have the

same eigenvalues.

Aand B aresimilar = B =P AP

A1 - B

Al—P7'AP|=|PAIP—P*AP| =|P (1l - A)P
P A1- A|P|=|P|P|a1 - Al=|PP|AI - A
Al—A

A and B have the same characteristic polynomial.
Thus A and B have the same eigenvalues.

Consequence: diagonalizing a matrix facilitates finding its eigenvalues
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- EX 1: (A diagonalizable matrix)

ME= S Of
AR R1"*0
BN arA
Sol: Characteristic equation:
A-1 -3 0

A-A=|-3 A-1 0 |=(1-4)(A+2)*=0

0 0 A+2

Eigenvalues: 4, =4,1,=-2,4, =-2

(1)A =4 = Eigenvector:p, =|1

(check)
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(2)A = -2 = Eigenvector: p, =

P:[pl

= Notes:

(1) P=[p,

(2)P=[p,

P,

P

s

ps]: 1

p3] X

pl] ~

B OO

O Fi THER i, Tk

1p3:

— PAP =

— P'AP =
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= Thm 7.5: (Condition for diagonalization)

An nxn matrix A Is diagonalizable if and only if

It has n linearly independent eigenvectors.
Pf:

(=)Ais diagonalizable

thereexists an invertible P s.t. D = P AP is diagonal

LetP:[pl | P, | | pn]andD:diag(%’lzi'”’ln)
',11 0 o340
0O A J ()

PD=[p, | P> || P, ] : ;2 I
0 0 - A,|

:[ﬂ’lpl | /12p2 | | ﬂnpn]
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AP =A[p, | p, || p]=[Ap, | Ap, |-~ | Ap,]
.+ AP =PD
ARSI ds) S
(1.e. the column vector p. of P areeigenvectors of A)
- Pisinvertible = p,, p,,---, p, are linearly independent.

. Ahas n linearly independent eigenvectors.

(«<)Anhas n linearly independent eigenvectors p,, p,,--- p,
with corresponding eigenvalues 4,,4,,--- 4

EESAD SRS =Kl el
Let P=[p, [ p, |-+ | P,]

n
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AP =A[p, | p, || P,

=[Ap, | Ap, | -~ | Ap,]
:[ﬂipl | Zzpz | | ﬂ’npn]
7 O F O
0 4 - 0
= D | 3|28 P s R =IRD)
50ENA05 e i
" Pys Puicecs P, @re linearly independent = P is invertible
~P?AP=D

— Alis diagonalizable

Note: If n linearly independent vectors do not exist,

then an nxn matrix A is not diagonalizable.
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= EX 4: (A matrix that is not diagonalizable)

Show that the following matrix is not diagonalizable.

oy 5

Sol: Characteristic equation:

Al- A = }“61 /;_ZJJ:(A—l)Z:o

Eigenvalue : 4, =1

0 -2 0 1 ) 1
/II—A:I—A:{ }~{ O}:Elgenvector: pl:{o}

0 O 0
A does not have two (n=2) linearly independent eigenvectors,

so A Is not diagonalizable.
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= Steps for diagonalizing an nxn square matrix:

Step 1: Find n linearly independent eigenvectors p;, p,,---, P,

for A with their corresponding eigenvalues A, 4,,--+, 4,

Step 2:Let P=[p, | p, |- | p.]
Step 3: S .
Tty MO 15

4 Pt BT

PEUR B A .

Note:

0 O

A

n

,where Ap. =Ap., 1=12,...,n

The order of the eigenvalues used to form P will determine
the order in which the eigenvalues appear on the main diagonal of D.
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= EX 5: (Diagonalizing a matrix)

e LIRS
A, 3
L )

Find a matrix P such that P AP is diagonal.

Sol: Characteristic equation:

A-1 1 1
MI—A\: -1 1-3 -1|=1-2)1+2)(1-3)=0
3 -1 A+1

Eigenvalues: 4, =2, 4, =-2, 1, =3
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1

— =l

3

-3
-1
3

i ]
=
T o
e b
0
_1_
15
o]
<Ll
L
1l -1
_4_

SNOSE

O TN

o+ O

o+ O

GO D =

= Eigenvector: p, =

O n-

= Eigenvector: p, =




= Al-A=|-1 0 -1|~|0

Qi ] % (gl

=
|
[N

P AR

X | |-t =1
=|X, |=| t |[=t] 1 | = Eigenvector: p, =
X, t 1
-1 1 -1
Let P=[p, p, p]=| 0 -1 1
R e i
B 0 =M
— P7AP=|0 -2 0] (diagonal form)
R0 U3
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- Notes: Kk is a positive integer

d, 0
mo-|? ¢
o 0
(2) D =P AP

0
0

d

n

DR =R AR

also

. A“=PD*P™

— DY =

g0
0 d;
=S80

=(P"AP)(P*AP)---(P'AP)
=P A(PP H)A(PP™)--- (PP HAP
=P 'AA.-.. AP

=P AP
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= Thm 7.6: (Sufficient conditions for diagonalization)

If an nxn matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and
hence A is diagonalizable.
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= EX 7: (Determining whether a matrix is diagonalizable)

ML) i
A=[0 0 1
WA =

Sol: Because A Is a triangular matrix,
Its eigenvalues are the main diagonal entries.

A =1,24,=0,4,=-3

These three values are distinct, so A Is diagonalizable. (thm.7.6)
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Keywords In Section 7.2:

. diagonalization problem: (sxsll) sl 4l
. diagonalization: (4 ss) juhass
. diagonalizable matrix: (4 sasll) Hulasill 418 48 s ns
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