Chapter 4
Vector Spaces 4l Gleladll

4.1 Vectorsin R"

4.2 Vector Spaces

4.3 Subspaces of Vector Spaces

4.4 Spanning Sets and Linear Independence
4.5 Basis and Dimension



4.1 VectorsinR"

= An ordered n-tuple:

a sequence of n real number (X, X,,-,X;)

n
= n-space: R

the set of all ordered n-tuple
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n=1
n=>2
n=3
n=4

R = 1-space
= set of all real number

R® = 2-space
= set of all ordered pair of real numbers (x;,x,)

R’= 3-space

= set of all ordered triple of real numbers (x;,x,, X3)

R = 4-space

= set of all ordered quadruple of real numbers (X;, X5, X3,X4)
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= Notes:
(1) An n-tuple (x;, X,,---,X.) can be viewed as a point in R"
with the xi’s as its coordinates.
(2) An n-tuple (x,,X,,---,X,) can be viewed as a vector
X = (X, X,,--+,X,) In R"with the X;’s as its components.

« EX:

---------------- 2 (¥1,%2) (x4, %2)

v
v

_ (0,0)
a pomt a vector
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u=(u,u,,---u ) v=_(v,V,,,V ) (two vectors in R")

= Equal:
u=Vv ifandonlyif u =v, U,=V,,---,u, =V,

= \ector addition (the sum of u and v):
U+V=(Uu +V,U,+V,, -, U +V )

= Scalar multiplication (the scalar multiple of u by c):
cu = (cu,,cu,,---,cu,)

= Notes:
The sum of two vectors and the scalar multiple of a vector
in R" are called the standard operations in R".
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= Negative:
= U =i(=U;,=Us,—Ug,. 5 =U,. )
= Difference:
u—v=_(U—V,U,—V,, U;—Vs,..., U —V_)

= /ero vector:
0=(0,0,...,0)

= Notes:
(1) The zero vector O in R" is called the additive identity in R,

(2) The vector —v is called the additive inverse of v.
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- Thm 4.2: (Properties of vector addition and scalar multiplication)
Let u, v, and w be vectors in R", and let ¢ and d be scalars.
(1) u+visa vector in R"
(2) utv =v+u
(3) (u+v)+w = u+(v+w)
(4) u+0=u
(5) u+(-u)=0
(6) cu isa vector in R"
(7) c(u+v) = cu+cv
(8) (c+d)u =cu+du
(9) c(du) = (cd)u
(10) 1(u) = u
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« Ex 5: (Vector operations in R%)
Letu=(2,-1,5,0),v=(4, 3,1,-1),and w=(-6, 2, 0, 3) be
vectors in R”. Solve x for x in each of the following.
(@) x=2u—(v+3w)
(b) 3(X+w) = 2u — v+X

Sol: (@) x=2u—(v+3w)
=2U—-V—-3w
=(4,-2,10,0)-(4,3,1,-1)-(-18,6,0,9)
=(4-4+18,-2-3-6,10-1-0,0+1-9)
=(18,-119,-8).
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(b) 3(x+w)=2u-Vv+x
3X+3W =2U—-V+X
3X—X=2U—-V—-3wW
2X=2U—-V—-3wW
X=U—-3V—-3w
=(215,0)+(-2,8,%,4)+(9,-3,0,%2)
:(9 119 4)

R L5 W
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= Thm 4.3: (Properties of additive identity and additive inverse)

Let v be a vector in R"and c be a scalar. Then the following is true.
(1) The additive identity is unique. That is, if u+v=v, thenu =0

(2) The additive inverse of v is unique. That is, if v+u=0, thenu = —v

(3) Ov=0

(4) c0=0

(5) If cv=0, then ¢=0 or v=0
(6)-(-Vv)=v
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- Linear combination:
The vector x is called a linear combination of V;,V,,..., V,,

If It can be expressed in the form
X=CV,+C,V,+---+CV, C,C,,C,: scalar
=" EX 0!
Given x = (— 1, & 2,—2),u=(0,14),v=(-1,1,2), and
w = (3,1,2) InR", find a, b, and ¢ such that x = au+bv+cw.

Sol: 5y B e S L
a + b + ¢ = -2
da + "2b + 2¢ = -2

—a=1 b=-2 c=-1

Thus X=u—-2v—-w
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= Notes:

Avector U=(U;,U,,...,U,) in R" can be viewed as:

a 1xn row matrix (row vector): u=[u,, U,,---,u,]

or U,

a nx1 column matrix (column vector): u=

(The matrix operations of addition and scalar multiplication

give the same results as the corresponding vector operations)

12/67



\Vector addition

U+V=_U;,Uy, -, U)+(V,V,, -, V)
= (U, +V, U, +V,, -, U +V )

u+v=[u,u,- --,ul+[v,Vv,, V]
=[u, +Vv, U, +V,, -, U +V ]

U+V=

U

Vi

U, +V,
u, +V,

Scalar multiplication

cu=c(u, U,,---, U,)
= (cu,,cuU,, -+, CU,)

cu=cfu, U,,---, u.]
=[cu,,cu,, -+, cu, ]

u, cu,

u cu
cu=¢|l °|=| °

LIS S et
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Keywords in Section 4.1

ordered n-tuple : <« » S5z )
n-space : s elad

equal : s sbee

vector addition : ¢ aex
scalar multiplication : e @ pa
negative : <L

difference : &2l

ZEro VECtor : ¢ te 4xis

additive identity : x> s
additive inverse : x> Slas
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4.2 VVector Spaces

= Vector spaces:
Let V be a set on which two operations (vector addition and

scalar multiplication) are defined. If the following axioms are
satisfied for every u, v, and w in V and every scalar (real number)
c and d, then V is called a vector space.

Addition:

(1) utvisinV

(2) u+v=v+u

(3) u+(v+w)=(u+v)+w

(4) V has a zero vector 0 such that for every u in V, u+0=u
(5) For every u In V, there is a vector in V denoted by —u

such that u+(-u)=0
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Scalar multiplication:
(6) culisinV.

(7) c(u+Vv)=cu+cv
(8) (c+d)u=cu+du
(9) c(du)=(cd)u

(10) L(u) =u
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= Notes:
(1) A vector space consists of four entities:

a set of vectors, a set of scalars, and two operations

V : nonempty set
c : scalar
+(u,Vv) =u+V : vector addition

e(C,U)=cCU : scalar multiplication
(v, + ) iscalled avector space

(2) V ={0}: zero vector space
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- Examples of vector spaces:
(1) n-tuple space: R"
(Upy Uy eey Uy )+ (Vy, Voo, V) = (U +Vy, U, +V,, 00+, U, +V, ) vector addition
k(u,,u,,---,u.) = (ku,ku,,---, ku_) scalar multiplication
(2) Matrix space: V = Mthe set of all mxn matrices with real values)

ExX: :(m=n=2)

ull u12 Vll V12 ull +V11 u12 +V12 A
{ + = vector addition

u21 u22 V21 V22 u21 5 V21 u22 an V22
ull u12 kull ku12 oy :
K = scalar multiplication
u21 u22 ku21 ku22
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(3) n-th degree polynomial space: V =P, (x)
(the set of all real polynomials of degree n or less)

p(X)+a(x) =(a, +hy) +(a +0)x+---+(a, +b,)X"
kp(x) =ka, +ka,x+---+ka X"

(4) Function space: Vv = c({thespt of all real-valued
continuous functions defined on the entire real line.)

(T+9)(¥)=1(x)+9(x)
(k) (x) =k (x)
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= Thm 4.4: (Properties of scalar multiplication)

Let v be any element of a vector space V, and let ¢ be any
scalar. Then the following properties are true.

(1) Ov=0

(2) c0=0

(3) If cv=0, thenc=0 or v=0
(4) (-)v=-v
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- Notes: To show that a set Is not a vector space, you need
only find one axiom that Is not satisfied.

» Ex 6: The set of all integer is not a vector space.

R e TR
(1)@ =1 ¢V (itisnot closed under scalar multiplication)

scalar. noninteger
Integer

= Ex 7: The set of all second-degree polynomials Is not a vector space.

Pf:  Let p(X)=x" and q(X)=—x"+x+1
= p(X)+q(x) =x+1gV
(it is not closed under vector addition)
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wil X~ 58
V=R2=the set of all ordered pairs of real numbers
vector addition:  (Uy,U,) +(v;,V,) = (U, +Vy,U, +V,)
scalar multiplication: c(u,,u,) = (cu,,0)
Verify V Is not a vector space.

Sol:
~1(L)=@10) =11
-'the set (together with the two given operations) Is
not a vector space
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Keywords in Section 4.2:

vector space : Clgaia cliad

n-space : s slial

matrix space : <lé stian cliad
polynomial space : sl Ciladatia clisd
function space : J sl sl
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4.3 Subspaces of Vector Spaces

= Subspace:
(V,+,e) :avector space
W = ¢
WcV

(W,+,e) : avector space (under the operations of addition and
scalar multiplication defined in V)

} . a honempty subset

— W is a subspace of V

= Trivial subspace:

Every vector space V has at least two subspaces.

(1) Zero vector space {0} is a subspace of V.
(2) Vis asubspace of V.
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= Thm 4.5: (Test for a subspace)
If W Is a nonempty subset of a vector space V, then W s

a subspace of V if and only if the following conditions hold.

(1) If u andv areinW, then u+v isinW.

(2) If uisin W and c is any scalar, then cu is in W.
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« Ex: Subspace of R?
(1) {0} 0=(0,0)
(2) Lines through the origin
(3) R’

. Ex:  Subspace of R3
(1) {0} 0=(0,0,0)
(2) Lines through the origin
(3) Planes through the origin
(4) R’
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« Ex 2: (A subspace of M,,,)
Let W be the set of all 2x2 symmetric matrices. Show that

W is a subspace of the vector space M,,.,, with the standard

operations of matrix addition and scalar multiplication.

Sol:
“WcM,, M,,:vector sapces

Let ALA, eW (A=A A =A)
AeW,A eW=(A+A) =A+A =A+A, (A +A cW)
keR,AcW = (kA)" =KkA" = kA (kAeW)

-.W'is a subspace of M,,_,
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« EX 3: (The set of singular matrices is not a subspace of M,,,)
Let W be the set of singular matrices of order 2. Show that

W iIs not a subspace of M., with the standard operations.

Sol:

1 O 0 O
A= ceW B= ceW
0 O 0 1

1 0
LA+B= W
0 1

~.W, Is not a subspace of M,
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= Ex 4: (The set of first-quadrant vectors is not a subspace of R%)
Show that W ={(x,,x,): X, >0and x, > 0} , with the standard
operations, is not a subspace of R’

Sol:
Let u=(1,1)eW

W ey i, P (not closed under scalar
A== g e multiplication)

~.W is not a subspace of R*
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Keywords in Section 4.3:

= Subspace : 2> sl

- trivial subspace : s S el
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4.4 Spanning Sets and Linear Independence

= Linear combination:

A vector v Ina vector space V is called a linear combination of
the vectors u,,u,,---,u, InV if v can be written in the form

V=CU, +C,U,+...+C.U, C,,Cy,e+,C, :SCalars
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= EX 2-3: (FInding a linear combination)
v,=(1,23) v,=(0,12) v,=(-1,0,1)
Prove (a) w=(1,1,1) isa linear combination of v,,v,, Vv,

(b) w=(1,-2,2) isnot a linear combination of v, Vv,,V,
Sol:

(8 w=cV,+C,V,+C,V,

(1,1,1)=c,(1,2,3)+¢,(01,2)+c,(-10]1)
= (¢, —¢C,, 2¢,+C,,3C, +2C, +C,)

C, .
=S AT s =1
ST AN
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il L

Guass—Jordan Eliminatian

U
COMFINI
NS IS

0
1

=3 B AR, (@, = eh2 L (B S

4

PN W

MRS O

(this system has infinitely many solutions)

t=1
=W =2V, -3V, +V,

215
s |
0|0
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(b)
W =C\V, +C,V, +C,;V,

B ] b R s P
I "uts) 0 ) Guass—Jordan Eliminatian s 10 1 2 _4
R A Y RO SRS 7

—> this system has no solution (..-0=7)

= W # C,V, +C,V, +C,V,
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= the span of a set: span (S)

If S={v,, V,,..., V. } IS @ set of vectors In a vector space V,
then the span of S s the set of all linear combinations of
the vectors in S,

span(S) ={c,v, +C,V, +---+C.V, | VC, € R}
(the set of all linear combinations of vectors in S)

= a spanning set of a vector space:

If every vector in a given vector space can be written as a
linear combination of vectors in a given set S, then S is
called a spanning set of the vector space.
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= Notes:
span (S) =V
— S spans (generates) V
V is spanned (generated) by S
S Is a spanning set of V

= Notes:
(1) span(g) =10}
(2) S cspan(S)
(3) 81’ Sz cV
S, €S, = span(S,) < span(S,)
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= Linear Independent (L.1.) and Linear Dependent (L.D.):

S={v,Vv,,---,v,} :asetof vectors in a vector space V
c,V,+C,V,+---+C Vv, =0

(1) If the equation has only the trivial solution (c, =c, =---=c¢, =0)
then S is called linearly independent.

(2) If the equation has a nontrivial solution (i.e., not all zeros),
then S is called linearly dependent.
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= Notes:
(1) ¢ is linearly independent

(2) 0eS=Sis linearly dependent.
(3) v=0={v}is linearly independent
(4) S, c5S,

S, Is linearly dependent = S, is linearly dependent

S, Is linearly independent = S, is linearly independent
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= Ex 8: (Testing for linearly independent)

Determine whether the following set of vectors in R* is L.I. or L.D.
S={1,2,3)(0,1,2),(-2,0,1)}

Vy Vs

Sol:

cV,+CV,+CVv, =0 = 2¢+ C+

0
i X0
2 1

0

Vs

C, s 2c=

=0

SEREN? CA-ECEN=({

Gauss - Jordan Elimination

N\
/7

MO0
0 10

O 0y 1

= ¢, =C,=¢, =0 (only the trivial solution)

= S is linearly independent
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= EX 9: (Testing for linearly independent)
Determine whether the following set of vectors in P, is L.I. or L.D.
S ={1+X — 2x&, 245X — X%, XX}
\% Y Y
Sol: : : i
C,V,+C,V,+CVs =0

i.e. Cy(1+X — 2X?) + C, (245X — X?) + C4(X+x2) = 0+0x+0x?

C1+2C2 =0 1 28 @0 g2 (])-
= c,+5¢c,+c; =0 = Ty Tt | A B P 5
—2C,—C,+C; =0  |-2 -1 1|0 O FORS0R ]

= This system has infinitely many solutions.
(i.e., This system has nontrivial solutions.)

= S is linearly dependent. (Ex:c,=2,c,=—1,c;=3)
40/67



= EX 10: (Testing for linearly independent)
Determine whether the following set of vectors in 2x2

matrix space iIs L.l. or L.D.

(i

Sol:
C,V,+C,V,+CV; =0

il T TR M R O ™G
“lo 117202 117%2 0|70 o
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= 2¢;+3C5+ Cy =0

Cy =0
2C,+2¢; =0
C;*+ C, =0
= P28 1l (0] 1 0 0|0]
1 0 00 Gauss - Jordan Elimination 0 1 00
0 2 2|0 0 0 1|0
ENE1NBAR0 0 0 0[0

= C; =C, = C3=0 (This system has only the trivial solution.)
— S s linearly independent.
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Keywords in Section 4.4

- linear combination : (s S 5

= Spanning set : el de sans

. trivial solution : b Ja

« linear independent : bl JMEELY)
« linear dependent : ball dlaic Yl
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4.5 Basis and Dimension

Generating (" Linearly
Sets(span V) ases Indegetndent
ets

If{(a) Sspans V (i.e., span(S)=V)
— |(b) Sis linearly independent

« Basis:

V . avector space
S={Vvy, Vy, ...,V }V

Intersection-ahalll

— Then S i1s called a basis for V

= Notes:
(1) D is a basis for {0}

(2) the standard basis for R3:
{i,j,k} i1i=(1,0,0), j=(0,1,0), k=(0,0, 1)

44



(3) the standard basis for R :
{e,, e, ....,e.} €.=(1,0.,...,0),e,=(0,1,...,0), e,=(0,0,...,1)

Ex: R*  {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}
(4) the standard basis for mxn matrix space:
{ Ej| 1<i<m, 1<j<n }

Ex: for M,, 2x2 matrix space:

1 0|{0 1{(0 0|0 O
o oflo oflz oflo o
(5) the standard basis for P,(x):

{1, x, X%, ..., X"}

Ex: Py(x) {1,x, x% x°}
45/



= Thm 4.9: (Uniqueness of basis representation)

If S={v,,v,,---,v | isabasis for a vector space V, then every

vector in V can be written in one and only one way as a linear

combination of vectors in S.
Pf:

‘> S is a basis :>{ L SREEY =

2. Sis linearly independent
wspan(S) =V Let v=cyvtCv,t..AC v,

vV =Db,v;+b,v,+...+b. v,
= 0 = (c,—by)Vv,+(c,— by)v,+...+(C,— b))V,
"+ S IS linearly independent

—Cc=by,C=Db,,...,c.=b, (i.e., uniqueness)
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= Thm 4.10: (Basis and linear dependence)
If S={v,,v,,---,v, } isabasis for a vector space V, then every

set containing more than n vectors in V is linearly dependent.

Pf:
Let S;={u;, U,, ...,u},m>n
- span(S) =V
U, =¢,V,+C,V, +:+C,V,
UV TSRS g o) S )

u,=¢.,v,+C_ V,+---+C_ .V,
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Let kyu;+k,u,+...+k u.=0

= dyv,+dyvot...+dv,=0  (where d; = ¢; K, +Ci K, +.. . +C;  K.)
o SHSILY]:

— d=0 Vi Vo el C oK PG SKEFTECHEERIC S KW= 1(()

C,.K,+CpK, +---+C,. kK =0

2m''m

C.K +C.,K,+---+C Kk =0

> According to Thm 1.1: If the homogeneous system has fewer
equations than variables, then it must have infinitely many solution.

m > n = k,u;+k,u,+...+k u_= 0 has nontrivial solution
= S, IS linearly dependent
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= Thm 4.11: (Number of vectors in a basis)
If a vector space V has one basis with n vectors, then every
basis for V has n vectors. (All bases for a finite-dimensional

vector space has the same number of vectors.)
A

S={vy, Vy, ...,V }

S'={uy, u,, ..., u.}

S isa basis ) Thm4.10 ]
i — n>m
S"IsL.L

S isL.l }Thm.4.10

two bases for a vector space

> =1 "Ji=]

Y : = n<m
S' 1sa basis

J
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= Finite dimensional:

A vector space V Is called finite dimensional,

If It has a basis consisting of a finite number of elements.
= Infinite dimensional:

If a vector space V is not finite dimensional,

then it Is called infinite dimensional.

« Dimension:

The dimension of a finite dimensional vector space V Is

defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

=symbol: dim(V) = #(S) (the number of vectors in S)
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dim(V) =n

_ Linearly
Generating Bases )!ndependent
Sets Sets

(2) dim(V) = n, ScV #(S)>n  #(S)=n #S)<n

= Notes:

(1) dim(0}) = 0 = #(9)

S . ageneratingset = #(S)>n
S :alL.l set = #(S)<n
S : abasis = #(S)=n

(3) dim(V)=n,W isasubspace of V = dim(W)<n
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= EXP:

(1) Vector space R" = basis {e;,e,, ..., e}
= dim(R") =n

(2) Vector space M,,,, = basis {E;; | 1<i<m, 1<j<n}
= dim(M,,,,)=mn

(3) Vector space P, (x) = basis {1, x, X%, ..., X"}
= dim(P,(x)) = n+1

(4) Vector space P(x) = basis {1, x, x, ...}
= dim(P(X)) = «
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- ExX 9: (Finding the dimension of a subspace)
(a) W={(d, c—d, c¢): c and d are real numbers}
(b) W={(2Db, b, 0): b is a real number}

Sol: (Note: Find a set of L.I. vectors that spans the subspace)

(@) (d,c—d,c)=c(0,1,1)+d(1,-1,0)
=S5={(0,1,1),(1,-1,0)} (SisL.l. and S spans W)
= S Is a basis for W
= dim(W) = #(5) = 2

(b) - (2b,b,0)=b(2,1,0)
=S={(2,1,0)}spans W and Sis L.I.
= S is a basis for W

= dim(W) = #(S) = 1
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= Ex 10: (Finding the dimension of a subspace)
Let W be the subspace of all symmetric matrices in M,,,.
What iIs the dimension of W?

v-{; ¢
o -t ot oo
5[l s 3 e s

= Sisabasisfor W = dim(W) =#(S) =3

&QCER}
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- Thm 4.12: (Basis tests in an n-dimensional space)
Let V be a vector space of dimension n.

(1) If S:{vl,vz,---,vn} Is a linearly independent set of
vectors inV, then S is a basis for V.
() If S={v,,v,,---,v.} spansV, thenS is a basis for V.
dim(V) =n

Img: If we have a space V of

dimension n, and a set of vectors S of S oL Linearly
number equal n, then for the set of Sets J Independent
vectors S to be a Basis of V, it is Sets
sufficient to show that S is L.I. or that
it spans V.
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Keywords in Section 4.5:

. Basis : (Lo

« Dimension : 2

= Finite dimension : 2= dgtis

= Infinite dimension : =) 45y
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