
Chapter 4 

Vector Spaces الفضاءات الاتجاهية

4.1  Vectors in Rn

4.2  Vector Spaces

4.3  Subspaces of Vector Spaces

4.4  Spanning Sets and Linear Independence

4.5  Basis and Dimension



4.1  Vectors in R
n

a sequence of n real number ),,,( 21 nxxx 

 An ordered n-tuple:

the set of all ordered n-tuple

 n-space:  R
n
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n = 4

= set of all ordered quadruple of real numbers

R
4  

= 4-space

),,,( 4321 xxxx

R
1  

= 1-space

= set of all real number

n = 1

n = 2 R
2  

= 2-space

= set of all ordered pair of real numbers ),( 21 xx

n = 3 R
3 
= 3-space

= set of all ordered triple of real numbers ),,( 321 xxx

 Ex:
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 Notes:

 Ex:

a point

 21, xx

a vector

 21, xx

 0,0

(1) An n-tuple                        can be viewed as a point in R
n 

with the xi’s as its coordinates.

(2) An n-tuple                        can be viewed as a vector

in Rn with the xi’s as its components.

),,,( 21 nxxx 

),,,( 21 nxxx 

),,,( 21 nxxxx 
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   nn vvvuuu ,,,  ,,,, 2121   vu (two vectors in Rn)

 Equal:

if and only if vu  nn vuvuvu   , ,  , 2211 

 Vector addition (the sum of u and v):

 nn vuvuvu   , , , 2211 vu

 Scalar multiplication (the scalar multiple of u by c):

 ncucucuc ,,, 21 u

 Notes:

The sum of two vectors and the scalar multiple of a vector

in R
n

are called the standard operations in Rn.
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 Negative:

),...,,,( 321 nuuuu u

 Difference:

) ,..., , ,( 332211 nn vuvuvuvu  vu

 Zero vector:

)0 ..., ,0 ,0(0

 Notes:

(1) The zero vector 0 in Rn is called the additive identity in Rn.

(2) The vector  –v is called the additive inverse of v.
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 Thm 4.2: (Properties of vector addition and scalar multiplication)

Let u, v, and w be vectors in R
n

, and let c and d be scalars.

(1)  u+v is a vector in Rn

(2)  u+v = v+u

(3)  (u+v)+w = u+(v+w)

(4)  u+0 = u

(5)  u+(–u) = 0

(6)  cu is a vector in Rn

(7)  c(u+v) = cu+cv

(8)  (c+d)u = cu+du

(9)  c(du) = (cd)u

(10) 1(u) = u
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 Ex 5:  (Vector operations in R4)

Sol: (a)

Let u=(2, – 1, 5, 0), v=(4, 3, 1, – 1), and w=(– 6, 2, 0, 3) be 

vectors in R
4
. Solve x for x in each of the following.

(a)  x = 2u – (v + 3w)

(b)  3(x+w) = 2u – v+x

).8 ,9 ,11 ,18(

)910 ,0110 ,632 ,1844(

)9 ,0 ,6 ,18()1 ,1 ,3 ,4()0 ,10 ,2 ,4(

32

)3(2











wvu

wvux
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(b)

     

 4,,,9

,0,3,9,,,20,5,1,2

322

323

233

2)(3

2
9

2
11

2
9

2
1

2
1

2
3

2
3

2
1



















wvux

wvux

wvuxx

xvuwx

xvuwx
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 Thm 4.3: (Properties of additive identity and additive inverse)

Let v be a vector in R
n 
and c be a scalar. Then the following is true.

(1) The additive identity is unique. That is, if u+v=v, then u = 0

(2) The additive inverse of v is unique. That is, if v+u=0, then u = –v

(3) 0v=0

(4) c0=0

(5) If cv=0, then c=0 or v=0

(6) –(– v) = v
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 Linear combination:

 Ex 6:

Given x = (– 1, – 2, – 2), u = (0,1,4), v = (– 1,1,2), and

w = (3,1,2) in R
3
, find a, b, and c such that x = au+bv+cw.

Sol:

2224

2

13







cba

cba

cb

1  ,2  ,1  cba

wvux  2  Thus

scalar: , , , 21  nccc 

The vector x is called  a linear combination of                     ,                 

if it can be expressed in the form 

nv,...,v,v 21

nnccc vvvx 21  21
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 Notes:  

A vector                               in        can be viewed as:),,,( 21 nuuu u nR

],,,[ 21 nu uu u





















nu

u

u



2

1

u

(The matrix operations of addition and scalar multiplication

give the same results as the corresponding vector operations)

or

a n×1 column matrix (column vector):

a 1×n row matrix (row vector):
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),  , ,(

) , , ,() , , ,(

2211

2121

nn

nn

vuvuvu

vvvuuu







vu

],  , ,[

] , , ,[],  , ,[

2211

2121

nn

nn

vuvuvu

vvvuuu







vu



































































nnnn vu

vu

vu

v

v

v

u

u

u



22

11

2

1

2

1

vu

Vector addition Scalar multiplication









































nn cu

cu

cu

u

u

u

cc


2

1

2

1

u

), ,,(

),,,(

21

21

n

n

 cucucu

 u uucc







u

],,,[

],,,[

21

21

n

n

 cucucu

 u uucc







u
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Keywords in Section 4.1:

 ordered n-tuple：زوج نىني مرتة

 n-space：فضاء نىني

 equal：مطاوي

 vector addition：جمع متجهي

 scalar multiplication：ضرب عذدي

 negative：ضالة

 difference：الفرق

 zero vector：متجه صفري

 additive identity：محايذ جمعي

 additive inverse：معاكص جمعي
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4.2 Vector Spaces

 Vector  spaces:

Let V be a set on which two operations (vector addition and 

scalar multiplication) are defined. If the following axioms are 

satisfied for every  u, v, and w in V and every scalar (real number) 

c and d, then V is called a vector space.

Addition:

(1)  u+v is in V

(2)  u+v=v+u

(3)  u+(v+w)=(u+v)+w

(4)  V has a zero vector 0 such that for every u in V, u+0=u

(5) For every u in V, there is a vector in V denoted by –u

such that u+(–u)=0
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Scalar multiplication:

(6)        is in V.uc

(7)                                 vuvu ccc  )(

(8) uuu dcdc  )(

(9) uu )()( cddc 

(10) uu )(1
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 Notes:

(1) A vector space consists of four entities:

(2)  ： 0V zero vector space

V：nonempty set

c：scalar

：),(

：),(

uu

vuvu

cc 

 vector addition

scalar multiplication

 ,,V is called a vector space

a set of vectors, a set of scalars, and two operations
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 Examples of vector spaces:

(1) n-tuple space: Rn

 ),,,(),,,(),,,( 22112121 nnnn vuvuvuvvvuuu  

),,,(),,,( 2121 nn kukukuuuuk  

(2) Matrix space: (the set of all m×n matrices with real values)
nmMV 

Ex: ：(m = n = 2)
































22222121

12121111

2221

1211

2221

1211

vuvu

vuvu

vv

vv

uu

uu



















2221

1211

2221

1211

kuku

kuku

uu

uu
k

vector addition

scalar multiplication

vector addition

scalar multiplication
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(3) n-th degree polynomial space:

(the set of all real polynomials of degree n or less)

)(xPV n

n

nn xbaxbabaxqxp )()()()()( 1100  

n

nxkaxkakaxkp  10)(

(4) Function space: (the set of all real-valued

continuous functions defined on the entire real line.)

)()())(( xgxfxgf 

),(  cV

)())(( xkfxkf 
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 Thm 4.4: (Properties of scalar multiplication)

Let v be any element of a vector space V, and let c be any

scalar. Then the following properties are true.

vv

0v0v

00

0v









)1(  (4)

or    0  then , If  (3)

  (2)

0  (1)

cc

c
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 Notes: To show that a set is not a vector space, you need 

only find one axiom that is not satisfied.

 Ex 7: The set of all second-degree polynomials is not a vector space.

Pf:      Let                  and
2)( xxp  1)( 2  xxxq

Vxxqxp  1)()(

(it is not closed under vector addition)

R,V 
2
11

V
2
1

2
1 )1)(( (it is not closed under scalar multiplication)

 
scalar

Pf:

 Ex 6: The set of all integer is not a vector space.

integer
noninteger
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 Ex 8:

V=R2=the set of all ordered pairs of real numbers

vector addition: ),(),(),( 22112121 vuvuvvuu 

scalar multiplication: )0,(),( 121 cuuuc 

)1 ,1()0 ,1()1 ,1(1 

the set (together with the two given operations) is 

not a vector space



Verify V is not a vector space.

Sol:
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Keywords in Section 4.2:

 vector space：فضاء متجهات

 n-space：فضاء نىني

 matrix space：فضاء مصفىفات

 polynomial space：فضاء متعذدات الحذود

 function space：فضاء الذوال
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4.3 Subspaces of Vector Spaces

 Subspace:

),,( V : a vector space









VW

W 
: a nonempty subset

),,( W ：a vector space (under the operations of addition and 

scalar multiplication defined in V)

 W is a subspace of V

 Trivial subspace:

Every vector space V has at least two subspaces.

(1) Zero vector space {0} is a subspace of  V.

(2)  V is a subspace of V.
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 Thm 4.5: (Test for a subspace)

If W is a nonempty subset of a vector space V, then W is 

a subspace of V if and only if the following conditions hold.

(1) If  u and v are in W, then  u+v is in W.

(2) If u is in W and c is any scalar, then cu is in W.
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 Ex:    Subspace of  R3

 Ex:   Subspace of  R2

   0 0,            (1) 00

origin he through tLines   (2)

2   (3) R

origin he through tPlanes   (3)

3   (4) R

   0 0, 0,            (1) 00

origin he through tLines   (2)
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 Ex 2: (A subspace of M2×2)

Let W be the set of all 2×2 symmetric matrices. Show that 

W is a subspace of the vector space M2×2, with the standard

operations of matrix addition and scalar multiplication.

sapcesvector  :      2222  MMW

Sol:

) (  Let  221121 AA,AA WA,A TT 

 )( 21212121 AAAAAAWAW,A TTT 

 )( kAkAkAWA,Rk TT 

22 of  subspace  a  is  MW

)( 21 WAA 

)( Wk A
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WBA 









10

01

222   of  subspace  anot    is  MW

 Ex 3: (The set of singular matrices is not a subspace of M2×2)

Let W be the set of singular matrices of order 2. Show that

W is not a subspace of  M2×2 with the standard operations.

WB,WA 


















10

00

00

01

Sol:
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 Ex 4: (The set of first-quadrant vectors is not a subspace of R
2
)

Show that                                                    , with the standard 

operations, is not a subspace of R
2
.

Sol:

W )1 ,1(Let   u

   of  subspace  anot    is  2RW

}0 and 0:),{( 2121  xxxxW

       W 1 ,11 ,111 u (not closed under scalar

multiplication)
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Keywords in Section 4.3:

 subspace：فضاء جسئي

 trivial subspace：فضاء جسئي تطيط
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4.4 Spanning Sets and Linear Independence

kkccc uuuv  2211

form  in the written becan   if  in     vectorsthe

 ofn combinatiolinear  a called is   space  vector  ain   A vector  

21 vuuu

v

V,,,

V

k

 Linear combination: 

scalars : 21 k,c,,cc 
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 Ex 2-3: (Finding a linear combination)

321

321

321

,, ofn combinatiolinear  anot  is  2,2)(1,   (b)           

 ,, ofn combinatiolinear  a is  (1,1,1)   (a)  Prove

1,0,1)(   (0,1,2)   (1,2,3)

vvvw

vvvw

vvv







Sol:

332211   (a) vvvw ccc 

       1012103211,1,1 321 ,,c,,c,,c 

)23 ,2 ,( 3212131 ccccccc 

 

123

1          2

1            

  

321

21

31









ccc

cc

cc
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













 



1123

1012

1101

 
 nEliminatioJordan Guass





















0000

1210

1101

321

1

32 vvvw 
t

tctctc  321   , 21  , 1

(this system has infinitely many solutions)
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332211      

)(

vvvw ccc

b

























2123

2012

1101

   
 nEliminatioJordan Guass





















7000

4210

1101

)70(solution    no  has  system     this  

332211 vvvw ccc 
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If S={v1, v2,…, vk} is a set of vectors in a vector space V, 

then the span of  S is the set of all linear combinations of 

the vectors in S,                                

 the span of a set:  span (S)

)(Sspan  

)in    vectorsof nscombinatiolinear  all ofset   (the

2211

S

Rcccc ikk  vvv 

 a spanning set of a vector space:

If every vector in a given vector space can be written as a 

linear combination of vectors in a given set S, then S is 

called a spanning set of the vector space.
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 0)(   (1) span

)(   (2) SspanS 

)()(       

,   (3)

2121

21

SspanSspanSS

VSS





 Notes:

VS

SV

V S

VS

 ofset  spanning a is      

by  )(generated spanned is      

)(generates spans   

)(span       





 Notes:
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dependent.linearly  called is          then

zeros), allnot  (i.e.,solution   nontrivial a hasequation   theIf (2)

t.independenlinearly  called is          then

)0(solution    trivialonly the hasequation   theIf (1) 21

S

S

ccc k  

 

0vvv

vvv





kk

k

ccc

S





2211

21 ,,,

 Linear Independent (L.I.) and Linear Dependent (L.D.):

: a set of vectors in a vector space V
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tindependenlinearly    is     (1) 

dependent.linearly    is  (2) SS  0

  tindependenlinearly    is  (3) v0v   

21   (4) SS 

dependentlinearly   is dependent linearly   is 21 SS 

t independenlinearly   is t  independenlinearly   is 12 SS 

 Notes:
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      1 0, 2,,2 1, 0,,3 2, 1, S

 Ex 8: (Testing for linearly independent)

0   23

0          2

02            

321

21

31







ccc

cc

cc

 0vvv 332211 ccc

Sol:

Determine whether the following set of vectors in R
3

is L.I. or L.D.















 



0123

0012

0201

  nEliminatioJordan   - Gauss

















0100

0010

0001

 solution  trivialonly the   0321  ccc

tindependenlinearly   is S

v1 v2 v3
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 Ex 9:  (Testing for linearly independent)

Determine whether the following set of vectors in P2 is L.I. or L.D.

S = {1+x – 2x2 , 2+5x – x2 , x+x2}

c1v1+c2v2+c3v3 = 0

i.e. c1(1+x – 2x2) + c2(2+5x – x2) + c3(x+x2) = 0+0x+0x2



c1+2c2 = 0

c1+5c2+c3 = 0

–2c1 – c2+c3 = 0

v1 v2 v3
Sol:

 This system has infinitely many solutions.

(i.e., This system has nontrivial solutions.)

 S is linearly dependent. (Ex: c1=2 , c2= – 1 , c3=3)

















 0112

0151

0021

















0000

0
3

1
11

0021

 
J. G.
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 Ex 10: (Testing for linearly independent)

Determine whether the following set of vectors in 2×2 

matrix space  is L.I. or L.D.



































02

01
,

12

03
,

10

12
S

Sol:





































00

00

02

01

12

03

10

12
321 ccc

c1v1+c2v2+c3v3 = 0

v1 v2 v3
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(This system has only the trivial solution.)c1 = c2 = c3= 0

S is linearly independent.

 2c1+3c2+  c3 = 0

c1 = 0

2c2+2c3 = 0

c1+ c2 = 0



















0011

0220

0001

0132



















0000

0100

0010

0001

  nEliminatioJordan   - Gauss
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Keywords in Section 4.4:

 linear combination：تركية خطي

 spanning set：مجمىعة المذي

 trivial solution：حل تطيط

 linear independent：الاضتقلال الخطي

 linear dependent：الاعتماد الخطي
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4.5 Basis and Dimension

 Basis:

V：a vector space





)(

)(

b

a S spans V  (i.e.,  span(S) = V )

S is linearly independent

Generating

Sets(span V)
Bases

Linearly

Independent

Sets

 Then S is called a basis for V

 Notes:

(1) Ø is a basis for {0}

(2) the standard basis for R3:

{i, j, k}    i = (1, 0, 0),  j = (0, 1, 0),  k = (0, 0, 1)

S ={v1, v2, …, vn}V

If Intersection-التقاطع
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(3) the standard basis for R
n

:

{e1, e2, …, en}    e1=(1,0,…,0), e2=(0,1,…,0), en=(0,0,…,1)

Ex:  R4 {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

Ex: for M22 matrix space:










































10

00
,

01

00
,

00

10
,

00

01

22

(4) the standard basis for mn matrix space:

{ Eij | 1im , 1jn }

(5) the standard basis for Pn(x): 

{1, x, x2, …, xn}

Ex:   P3(x) {1, x, x2, x3}
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 Thm 4.9: (Uniqueness of basis representation)

If                                 is a basis for a vector space V, then every

vector in V can be written in one and only one way as a linear 

combination of vectors in S.

 nS vvv ,,, 21 

Pf:





  basis a is  S
1. span(S) = V

2. S is linearly independent

 span(S) = V Let v = c1v1+c2v2+…+cnvn

v = b1v1+b2v2+…+bnvn

 0 = (c1–b1)v1+(c2 – b2)v2+…+(cn – bn)vn

tindependenlinearly  is  S

(i.e., uniqueness) c1= b1 , c2= b2 ,…, cn= bn
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 Thm 4.10: (Basis and linear dependence)

If                                 is a basis for a vector space V, then every

set containing more than n vectors in V is linearly dependent.

 nS vvv ,,, 21 

Pf: 

S1 = {u1, u2, …, um} , m > nLet

VSspan )(

uiV

nnmmmm

nn

nn

ccc

                    

ccc

ccc

vvvu

vvvu

vvvu















2211

22221122

12211111


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L.I. is S

 di=0    i i.e.

0

                   

0

0

2211

2222121

1212111







mnmnn

mm

mm

kckckc

kckckc

kckckc









Let k1u1+k2u2+…+kmum= 0

(where di = ci1k1+ci2k2+…+cimkm) d1v1+d2v2+…+dnvn= 0

According to Thm 1.1: If the homogeneous system has fewer 

equations than variables, then it must have infinitely many solution.



m > n  k1u1+k2u2+…+kmum = 0 has nontrivial solution

 S1 is linearly dependent
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 Thm 4.11: (Number of vectors in a basis)

If a vector space V has one basis with n vectors, then every

basis for V  has n vectors. (All bases for a finite-dimensional

vector space has the same number of vectors.)

Pf:

S ={v1, v2, …, vn}

S'={u1, u2, …, um}
two bases for a vector space

mn

mn
S

S

mn
S

S

Thm

Thm

























10.4.

10.4.

 basis a is  '

L.I. is   

L.I. is  '

 basis a is  
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 Finite dimensional:

A vector space V is called finite dimensional,

if it has a basis consisting of a finite number of elements.

 Infinite dimensional:

If a vector space V is not finite dimensional,

then it is called infinite dimensional.

 Dimension:

The dimension of a finite dimensional vector space V  is

defined to be the number of vectors in a basis for V.

V: a vector space S: a basis for V

symbol: dim(V) = #(S) (the number of vectors in S)
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 Notes:

(1) dim({0}) = 0 = #(Ø)

(2) dim(V) = n , SV

S：a generating set    #(S)  n

S：a L.I. set               #(S)  n

S：a basis                   #(S) = n

(3) dim(V) = n , W is a subspace of V  dim(W)  n 

Generating

Sets
Bases

Linearly

Independent

Sets

#(S) > n #(S) = n #(S) < n

dim(V) = n
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 Exp:

(1) Vector space  Rn  basis {e1 , e2 ,  , en}

(2) Vector space Mmn  basis {Eij | 1im , 1jn}

(3) Vector space Pn(x)   basis {1, x, x2,  , xn}

(4) Vector space P(x)     basis {1, x, x2, }

 dim(Rn) = n

 dim(Mmn)=mn

 dim(Pn(x)) = n+1

 dim(P(x)) = 
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 Ex 9:  (Finding the dimension of a subspace)

(a) W={(d, c–d, c):  c and d are real numbers}

(b) W={(2b, b, 0):  b is a real number}

Sol: (Note: Find a set of L.I. vectors that spans the subspace)

(a) (d, c– d, c) = c(0, 1, 1) + d(1, – 1, 0)

 S = {(0, 1, 1) , (1, – 1, 0)} (S is L.I. and S spans W)

 S is a basis for W

 dim(W) = #(S) = 2

 S = {(2, 1, 0)} spans W and  S is L.I.

 S is a basis for W

 dim(W) = #(S) = 1

   0,1,20,,2 bbb (b)
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 Ex 10: (Finding the dimension of a subspace)

Let W  be the subspace of all symmetric matrices in  M22.

What is the dimension of  W?

Sol:





















 Rcba

cb

ba
W ,,





































10

00

01

10

00

01
cba

cb

ba




































10

00
,

01

10
,

00

01
S spans W and S is L.I. 

 S is a basis for W  dim(W) = #(S) = 3
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 Thm 4.12: (Basis tests in an n-dimensional space)

Let V be a vector space of dimension n.

(1) If is a linearly independent set of

vectors in V, then S is a basis for V.

(2) If spans V, then S is a basis for V.

Generating

Sets Bases
Linearly

Independent

Sets

dim(V) = n

#(S) > n

#(S) = n
#(S) < n

 n21 ,,,S vvv 

 n21 ,,,S vvv 

Imp: If we have a space V of 

dimension n, and a set of vectors S of 
number equal n, then for the set of 
vectors S to be a Basis of V, it is 
sufficient to show that S is L.I. or that 
it spans V.
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Keywords in Section 4.5:

 Basis：أضاش

 Dimension：تعذ

 Finite dimension：منتهية الثعذ

 Infinite dimension： لامنتهية الثعذ


