Chapter 5 Dot, Inner and Cross Products

5.1 Length of a vector5.2 Dot Product5.3 Inner Product5.4 Cross Product

5.1 Length and Dot Product in \mathbb{R}^n

• Length:

The length of a vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n is given by

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

- Notes: The length of a vector is also called its norm.
- Notes: Properties of length

(1) $\|\mathbf{v}\| \ge 0$ (2) $\|\mathbf{v}\| = 1 \Rightarrow \mathbf{v}$ is called a **unit vector**. (3) $\|\mathbf{v}\| = 0$ iff $\mathbf{v} = 0$ (4) $\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$ • Ex 1:

(a) In \mathbb{R}^5 , the length of $\mathbf{v} = (0, -2, 1, 4, -2)$ is given by

$$\|\mathbf{v}\| = \sqrt{0^2 + (-2)^2 + 1^2 + 4^2} + (-2)^2 = \sqrt{25} = 5$$

(b) In R^3 the length of $\mathbf{v} = (\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}})$ is given by

$$\|\mathbf{v}\| = \sqrt{\left(\frac{2}{\sqrt{17}}\right)^2 + \left(\frac{-2}{\sqrt{17}}\right)^2 + \left(\frac{3}{\sqrt{17}}\right)^2} = \sqrt{\frac{17}{17}} = 1$$

(v is a unit vector)

• A standard unit vector in \mathbb{R}^n :

$$\{\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n\} = \{(1, 0, \cdots, 0), (0, 1, \cdots, 0), (0, 0, \cdots, 1)\}$$

• Ex:

the standard unit vector in R^2 : $\{i, j\} = \{(1,0), (0,1)\}$

the standard unit vector in R^3 : $\{i, j, k\} = \{(1,0,0), (0,1,0), (0,0,1)\}$

Notes: (Two nonzero vectors are parallel)

 $\mathbf{u} = c\mathbf{v}$

- (1) $c > 0 \implies \mathbf{u}$ and \mathbf{v} have the same direction
- (2) $c < 0 \implies$ **u** and **v** have the opposite direction

• Thm 5.1: (Length of a scalar multiple)

Let **v** be a vector in \mathbb{R}^n and c be a scalar. Then

 $\|c\mathbf{v}\| = |c|\|\mathbf{v}\|$

Pf:

$$\mathbf{v} = (v_1, v_2, \dots, v_n)$$

$$\Rightarrow c\mathbf{v} = (cv_1, cv_2, \dots, cv_n)$$

$$\|c\mathbf{v}\| = \|(cv_1, cv_2, \dots, cv_n)\|$$

$$= \sqrt{(cv_1)^2 + (cv_2)^2 + \dots + (cv_n)^2}$$

$$= \sqrt{c^2 (v_1^2 + v_2^2 + \dots + v_n^2)}$$

$$= |c| \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

$$= |c| \|\mathbf{v}\|$$

• Thm 5.2: (Unit vector in the direction of **v**) If **v** is a nonzero vector in \mathbb{R}^n , then the vector $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$

has length 1 and has the same direction as **v**. This vector **u** is called the **unit vector in the direction of v**.

Pf:

v is nonzero $\Rightarrow \|\mathbf{v}\| \neq 0 \Rightarrow \frac{1}{\|\mathbf{v}\|} > 0$ $\Rightarrow \mathbf{u} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$ (**u** has the same direction as **v**) $\|\mathbf{u}\| = \left\|\frac{\mathbf{v}}{\|\mathbf{v}\|}\right\| = \frac{1}{\|\mathbf{v}\|} \|\mathbf{v}\| = 1$ (u has length 1) • Notes: (1) The vector $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is called the unit vector in the direction of \mathbf{v} .

(2) The process of finding the unit vector in the direction of v is called normalizing the vector v.

• Ex 2: (Finding a unit vector)

Find the unit vector in the direction of $\mathbf{v} = (3, -1, 2)$, and verify that this vector has length 1.

Sol:

••••

$$\mathbf{v} = (3, -1, 2) \implies \|\mathbf{v}\| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{14}$$

$$\Rightarrow \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{(3, -1, 2)}{\sqrt{3^2 + (-1)^2 + 2^2}} = \frac{1}{\sqrt{14}} (3, -1, 2) = \left(\frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right)$$

$$\sqrt{\left(\frac{3}{\sqrt{14}}\right)^2 + \left(\frac{-1}{\sqrt{14}}\right)^2 + \left(\frac{2}{\sqrt{14}}\right)^2} = \sqrt{\frac{14}{14}} = 1$$

is a unit vector.

Distance between two vectors:

The **distance** between two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n is

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\|$$

Notes: (Properties of distance)

(1) $d(\mathbf{u}, \mathbf{v}) \ge 0$

- (2) $d(\mathbf{u}, \mathbf{i})$ and only if $\mathbf{u} = \mathbf{v}$
- (3) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$

Ex 3: (Finding the distance between two vectors)
 The distance between u=(0, 2, 2) and v=(2, 0, 1) is

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(0 - 2, 2 - 0, 2 - 1)\|$$
$$= \sqrt{(-2)^2 + 2^2 + 1^2} = 3$$

Keywords in Section 5.1:

- length: طول
- معیار :norm
- unit vector: متجه الوحدة
- standard unit vector : متجه الوحدة الأساسي
- normalizing: معايرة
- distance: المسافة
- angle: زاوية
- triangle inequality: متباينة المثلث
- Pythagorean theorem: نظرية فيثاغورس

5.2 Dot Product

• Dot product in *Rⁿ*:

The **dot product** of $\mathbf{u} = (u_1, u_2, \dots, u_n)$ and $\mathbf{v} = (v_1, v_2, \dots, v_n)$ is the scalar quantity

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$

Ex 4: (Finding the dot product of two vectors)
 The dot product of u=(1, 2, 0, -3) and v=(3, -2, 4, 2) is

 $\mathbf{u} \cdot \mathbf{v} = (1)(3) + (2)(-2) + (0)(4) + (-3)(2) = -7$

• Thm 5.3: (Properties of the dot product)

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n and c is a scalar, then the following properties are true

then the following properties are true.

(1)
$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$

(2)
$$\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

(3)
$$c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$$

$$(4) \quad \mathbf{v} \cdot \mathbf{v} = \| \mathbf{v} \|^2$$

(5) $\mathbf{v} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{v} \neq \mathbf{0}$ and only if $\mathbf{v} = \mathbf{0}$

• Euclidean *n*-space:

 R^n was defined to be the *set* of all order n-tuples of real numbers. When R^n is combined with the standard operations of vector addition, scalar multiplication, vector length, and the dot product, the resulting vector space is called **Euclidean** *n*-space.

• Ex 5: (Finding dot products)

 $\mathbf{u} = (2, -2), \mathbf{v} = (5, 8), \mathbf{w} = (-4, 3)$

(a) $\mathbf{u} \cdot \mathbf{v}$ (b) $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (c) $\mathbf{u} \cdot (2\mathbf{v})$ (d) $||\mathbf{w}||^2$ (e) $\mathbf{u} \cdot (\mathbf{v} - 2\mathbf{w})$ Sol:

(a)
$$\mathbf{u} \cdot \mathbf{v} = (2)(5) + (-2)(8) = -6$$

(b) $(\mathbf{u} \cdot \mathbf{v})\mathbf{w} = -6\mathbf{w} = -6(-4, 3) = (24, -18)$
(c) $\mathbf{u} \cdot (2\mathbf{v}) = 2(\mathbf{u} \cdot \mathbf{v}) = 2(-6) = -12$
(d) $\|\mathbf{w}\|^2 = \mathbf{w} \cdot \mathbf{w} = (-4)(-4) + (3)(3) = 25$
(e) $\mathbf{v} - 2\mathbf{w} = (5 - (-8), 8 - 6) = (13, 2)$
 $\mathbf{u} \cdot (\mathbf{v} - 2\mathbf{w}) = (2)(13) + (-2)(2) = 26 - 4 = 22$

• Ex 6: (Using the properties of the dot product) Given $\mathbf{u} \cdot \mathbf{u} = 39$ $\mathbf{u} \cdot \mathbf{v} = -3$ $\mathbf{v} \cdot \mathbf{v} = 79$ Find $(\mathbf{u} + 2\mathbf{v}) \cdot (3\mathbf{u} + \mathbf{v})$

Sol:

$$(\mathbf{u}+2\mathbf{v})\cdot(3\mathbf{u}+\mathbf{v}) = \mathbf{u}\cdot(3\mathbf{u}+\mathbf{v}) + 2\mathbf{v}\cdot(3\mathbf{u}+\mathbf{v})$$
$$= \mathbf{u}\cdot(3\mathbf{u}) + \mathbf{u}\cdot\mathbf{v} + (2\mathbf{v})\cdot(3\mathbf{u}) + (2\mathbf{v})\cdot\mathbf{v}$$
$$= 3(\mathbf{u}\cdot\mathbf{u}) + \mathbf{u}\cdot\mathbf{v} + 6(\mathbf{v}\cdot\mathbf{u}) + 2(\mathbf{v}\cdot\mathbf{v})$$
$$= 3(\mathbf{u}\cdot\mathbf{u}) + 7(\mathbf{u}\cdot\mathbf{v}) + 2(\mathbf{v}\cdot\mathbf{v})$$
$$= 3(39) + 7(-3) + 2(79) = 254$$

Thm 5.4: (The Cauchy - Schwarz inequality)

If **u** and **v** are vectors in \mathbb{R}^n , then $|\mathbf{u} \cdot \mathbf{v}| \le ||\mathbf{u}|| ||\mathbf{v}||$ ($|\mathbf{u} \cdot \mathbf{v}|$ denotes the absolute value of $\mathbf{u} \cdot \mathbf{v}$

Ex 7: (An example of the Cauchy - Schwarz inequality)
 Verify the Cauchy - Schwarz inequality for u=(1, -1, 3) and v=(2, 0, -1)

Sol:
$$\mathbf{u} \cdot \mathbf{v} = -1$$
, $\mathbf{u} \cdot \mathbf{u} = 11$, $\mathbf{v} \cdot \mathbf{v} = 5$
 $\Rightarrow |\mathbf{u} \cdot \mathbf{v}| = |-1| = 1$
 $\|\mathbf{u}\| \|\mathbf{v}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} \cdot \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{11} \cdot \sqrt{5} = \sqrt{55}$
 $\therefore |\mathbf{u} \cdot \mathbf{v}| \le \|\mathbf{u}\| \|\mathbf{v}\|$

• The angle between two vectors in \mathbb{R}^n :

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, 0 \le \theta \le \pi$$
Opposite
direction

$$\mathbf{u} \cdot \mathbf{v} < \mathbf{0} \quad \mathbf{u} \cdot \mathbf{v} = \mathbf{0} \quad \mathbf{u} \cdot \mathbf{v} > \mathbf{0}$$
Same
direction

$$\theta = \pi \quad \frac{\pi}{2} < \theta < \pi \quad \theta = \frac{\pi}{2} \quad 0 < \theta < \frac{\pi}{2} \quad \theta = 0$$

$$\cos = -1 \quad \cos < 0 \quad \cos = 0 \quad \cos > 0$$

• Note:

The angle between the zero vector and another vector is not defined.

Ex 8: (Finding the angle between two vectors)
 u = (-4, 0, 2, -2) v = (2, 0, -1, 1)
 Sol:

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{(-4)^2 + 0^2 + 2^2 + (-2)^2} = \sqrt{24}$$
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{2^2 + (0)^2 + (-1)^2 + 1^2} = \sqrt{6}$$
$$\mathbf{u} \cdot \mathbf{v} = (-4)(2) + (0)(0) + (2)(-1) + (-2)(1) = -12$$
$$\Rightarrow \cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} = \frac{-12}{\sqrt{24}\sqrt{6}} = -\frac{12}{\sqrt{144}} = -1$$

 $\Rightarrow \theta = \pi$ \therefore **u** and **v** have opposite directions. (**u** = -2**v**)

Orthogonal vectors:

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$

• Note:

The vector $\mathbf{0}$ is said to be orthogonal to every vector.

• Ex 10: (Finding orthogonal vectors)

Determine all vectors in \mathbb{R}^n that are orthogonal to $\mathbf{u}=(4, 2)$. Sol:

$$\mathbf{u} = (4, 2) \quad \text{Let} \quad \mathbf{v} = (v_1, v_2)$$

$$\Rightarrow \quad \mathbf{u} \cdot \mathbf{v} = (4, 2) \cdot (v_1, v_2)$$

$$= 4v_1 + 2v_2$$

$$= 0 \quad [4 \quad 2 \quad 0] \rightarrow \begin{bmatrix} 1 \quad \frac{1}{2} & 0 \end{bmatrix}$$

$$\Rightarrow \quad v_1 = \frac{-t}{2} \quad , \quad v_2 = t$$

$$\therefore \quad \mathbf{v} = \left(\frac{-t}{2}, t\right), \quad t \in \mathbb{R}$$

• Thm 5.5: (The triangle inequality)

```
If u and v are vectors in \mathbb{R}^n, then ||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||

Pf:

||\mathbf{u} + \mathbf{v}||^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})

= \mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) + \mathbf{v} \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}

= ||\mathbf{u}||^2 + 2(\mathbf{u} \cdot \mathbf{v}) + ||\mathbf{v}||^2 \le ||\mathbf{u}||^2 + 2||\mathbf{u} \cdot \mathbf{v}|| + ||\mathbf{v}||^2

\le ||\mathbf{u}||^2 + 2||\mathbf{u}|| ||\mathbf{v}|| + ||\mathbf{v}||^2

= (||\mathbf{u}|| + ||\mathbf{v}||)^2
```

 $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$

• Note:

Equality occurs in the triangle inequality if and only if the vectors **u** and **v** have the same direction.

• Thm 5.6: (The Pythagorean theorem)

If **u** and **v** are vectors in *Rⁿ*, then **u** and **v** are orthogonal if and only if

$$||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$$

Dot product and matrix multiplication:

$$\mathbf{u} = \begin{vmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{vmatrix} \quad \mathbf{v} = \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix}$$

(A vector $\mathbf{u} = (u_1, u_2, \dots, u_n)$ in \mathbb{R}^n is represented as an $n \times 1$ column matrix)

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 v_1 + u_2 v_2 + \cdots + u_n v_n \end{bmatrix}$$

Keywords in Section 5.2:

- dot product: الضرب النقطي
- Euclidean *n*-space: فضاء نوني اقليدي
- Cauchy-Schwarz inequality: متباينة كوشي-شوارز
- triangle inequality: متباينة المثلث
- Pythagorean theorem: نظرية فيثاغور س

Inner product:

Let **u**, **v**, and **w** be vectors in a vector space *V*, and let *c* be any scalar. An inner product on *V* is a <u>function</u> that associates a real number \langle **u**, **v** \rangle with each pair of vectors **u** and **v** and satisfies the following axioms.

(1)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

(2)
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

(3)
$$c \langle \mathbf{u}, \mathbf{v} \rangle = \langle c\mathbf{u}, \mathbf{v} \rangle$$

(4) $\langle \mathbf{v}, \mathbf{w} \rangle \geq 0$ $\langle \mathbf{v}, \mathbf{v} \rangle \neq 0$ and only if $\mathbf{v} = 0$

• Note:

 $\mathbf{u} \cdot \mathbf{v} = \text{dot product (Euclidean inner product for } R^n)$ < $\mathbf{u}, \mathbf{v} \ge \text{general inner product for vector space } V$

• Note:

A vector space V with an inner product is called an inner product space.

Vector space: $(V, +, \bullet)$ Inner product space: $(V, +, \bullet, <, >)$ • Ex 1: (The Euclidean inner product for \mathbb{R}^n)

Show that the dot product in R^n satisfies the four axioms of an inner product.

Sol:

$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
, $\mathbf{v} = (v_1, v_2, \dots, v_n)$

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

By Theorem 5.3, this dot product satisfies the required four axioms. Thus it is an inner product on R^n .

• Ex 2: (A different inner product for \mathbb{R}^n)

Show that the function defines an inner product on R^2 , where $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$.

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$$

Sol:

(a)
$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2 = v_1 u_1 + 2v_2 u_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$

(b) $\mathbf{w} = (w_1, w_2)$
 $\Rightarrow \langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = u_1 (v_1 + w_1) + 2u_2 (v_2 + w_2)$
 $= u_1 v_1 + u_1 w_1 + 2u_2 v_2 + 2u_2 w_2$
 $= (u_1 v_1 + 2u_2 v_2) + (u_1 w_1 + 2u_2 w_2)$
 $= \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

(c)
$$c \langle \mathbf{u}, \mathbf{v} \rangle = c(u_1v_1 + 2u_2v_2) = (cu_1)v_1 + 2(cu_2)v_2 = \langle c\mathbf{u}, \mathbf{v} \rangle$$

(d) $\langle \mathbf{v}, \mathbf{v} \rangle = v_1^2 + 2v_2^2 \ge 0$
 $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Rightarrow v_1^2 + 2v_2^2 = 0 \Rightarrow v_1 = v_2 = 0 \quad (\mathbf{v} = 0)$

• Note: (An inner product on \mathbb{R}^n)

 $\langle \mathbf{u}, \mathbf{v} \rangle = c_1 u_1 v_1 + c_2 u_2 v_2 + \dots + c_n u_n v_n, \quad c_i > 0$

• Ex 3: (A function that is not an inner product)

Show that the following function is not an inner product on R^3 .

$$\langle \mathbf{u} \cdot \mathbf{v} \rangle = u_1 v_1 - 2u_2 v_2 + u_3 v_3$$

Sol:

Let $\mathbf{v} = (1, 2, 1)$ Then $\langle \mathbf{v}, \mathbf{v} \rangle = (1)(1) - 2(2)(2) + (1)(1) = -6 < 0$

Axiom 4 is not satisfied.

Thus this function is not an inner product on R^3 .

Thm 5.7: (Properties of inner products)

Let **u**, **v**, and **w** be vectors in an inner product space *V*, and let *c* be any real number.

(1)
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

(2) $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
(3) $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$

• Norm (length) of **u**:

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$

• Note:

$$\|\mathbf{u}\|^2 = \langle \mathbf{u}, \mathbf{u} \rangle$$

Distance between **u** and **v**:

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

Angle between two nonzero vectors u and v:

$$\cos\theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|}, \ 0 \le \theta \le \pi$$

• Orthogonal: $(\mathbf{u} \perp \mathbf{v})$

u and **v** are **orthogonal** if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

• Notes:

(1) If $\|\mathbf{v}\| = 1$, then v is called a unit vector.

• Ex 6: (Finding inner product)

$$\langle p , q \rangle = a_0 b_0 + a_1 b_1 + \dots + a_n b_n$$
 is an inner product
Let $p(x) = 1 - 2x^2$, $q(x) = 4 - 2x + x^2$ be polynomials in $P_2(x)$
(a) $\langle p, q \rangle = ?$ (b) $||q|| = ?$ (c) $d(p, q) = ?$
Sol:

(a)
$$\langle p, q \rangle = (1)(4) + (0)(-2) + (-2)(1) = 2$$

(b) $||q|| = \sqrt{\langle q, q \rangle} = \sqrt{4^2 + (-2)^2 + 1^2} = \sqrt{21}$
(c) $\because p - q = -3 + 2x - 3x^2$
 $\therefore d(p, q) = ||p - q|| = \sqrt{\langle p - q, p - q \rangle}$
 $= \sqrt{(-3)^2 + 2^2 + (-3)^2} = \sqrt{22}$

- Properties of norm:
 - (1) $||\mathbf{u}|| \ge 0$
 - (2) $||\mathbf{u}|| = 0$ u = 0
 - (3) $||c\mathbf{u}|| = |c|||\mathbf{u}||$
- Properties of distance:
 - (1) $d(\mathbf{u}, \mathbf{v}) \ge 0$
 - (2) $d(\mathbf{u}, \mathbf{v}f) = 0$ only if

 $\mathbf{u} = \mathbf{v}$

(3) $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$

• Thm 5.8 :

Let **u** and **v** be vectors in an inner product space V. (1) Cauchy-Schwarz inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$ Theorem 5.4 (2) Triangle inequality: $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$ Theorem 5.5 (3) Pythagorean theorem : **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ Theorem 5.6 Orthogonal projections in inner product spaces:

Let **u** and **v** be two vectors in an inner product space *V*, such that $\mathbf{v} \neq \mathbf{0}$. Then the **orthogonal projection of u onto v** is given by

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

• Note:

If **v** is a init vector, then $\langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2 = 1$. The formula for the orthogonal projection of **u** onto **v** takes the following simpler form.

 $\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v}$

• Ex 10: (Finding an orthogonal projection in R^3)

Use the Euclidean inner product in R^3 to find the orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:

::
$$\langle \mathbf{u}, \mathbf{v} \rangle = (6)(1) + (2)(2) + (4)(0) = 10$$

 $\langle \mathbf{v}, \mathbf{v} \rangle = 1^2 + 2^2 + 0^2 = 5$

:
$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{10}{5}(1, 2, 0) = (2, 4, 0)$$

• Note:

 $u - \text{proj}_{v}u = (6, 2, 4) - (2, 4, 0) = (4, -2, 4)$ is orthogonal to v = (1, 2, 0).

Thm 5.9: (Orthogonal projection and distance)

Let **u** and **v** be two vectors in an inner product space *V*, such that $\mathbf{v} \neq \mathbf{0}$. Then

 $d(\mathbf{u}, \operatorname{proj}_{\mathbf{v}}\mathbf{u}) < d(\mathbf{u}, c\mathbf{v}), c$

$$c \neq \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Keywords in Section 5.2:

- inner product: ضرب داخلي
- inner product space: فضاء الضرب الداخلي
- معیار :norm -
- distance: مسافة
- angle: زاوية
- orthogonal: متعامد
- unit vector: متجه وحدة
- normalizing: معايرة
- Cauchy Schwarz inequality: متباينة كوشي شوارز
- triangle inequality: متباينة المثلث
- Pythagorean theorem: نظریة فیثاغور س
- orthogonal projection: اسقاط عمودي

5.4 Cross Product

• Cross product in *R*³:

The **cross product** of $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ is the vector quantity

$$\mathbf{w} = \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, -\begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right)$$
$$\mathbf{w} = \mathbf{u} \times \mathbf{v} = \left(u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \right)$$

Ex 11: (Finding the cross product of two vectors)
 The cross product of u=(1, 2, 0) and v=(3, -2, 4) is

$$\mathbf{w} = \mathbf{u} \times \mathbf{v} = (8, -4, -8)$$

• Thm 5.10: Relationships involving cross product and dot product

Let **u**, **v** and **w** be 3 vectors in R³, then:

- (a) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u})
- (b) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ $(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{v})$

(c)
$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$
 (Lagrange's identity)

- $(d) \quad \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w} \quad (\textit{relationship between cross and dot products})$
- $(e) \quad (u \times v) \times w = (u \cdot w)v (v \cdot w)u \quad (\textit{relationship between cross and dot products})$
- Thm 5.11: Properties of involving cross product

Let **u**, **v** and **w** be 3 vectors in \mathbb{R}^3 and k a scalar, then:

(a)
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$

(b) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
(c) $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
(d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$
(e) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
(f) $\mathbf{u} \times \mathbf{u} = \mathbf{0}$

• Thm 5.12: Scalar triple product

Let **u**, **v** and **w** be 3 vectors in \mathbb{R}^3 , then:

$$V = \mathbf{w} \bullet (\mathbf{u} \times \mathbf{v}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} =$$
Volume of the parallelepiped determined by the 3 vectors

Keywords in Section 5.4:

- Cross product: ضرب خارجي
- Scalar triple product: الضرب الثلاثي العددي
- angle: زاوية
- orthogonal: متعامد