
Lecture7- Security Programming

NET 445 – Internet Programming

Secure Communication

2

 Well established needs for secure
communication
 War time communication

 Business transactions

 Requirements of secure communication
1. Secrecy

– Only intended receiver understands the message

2. Authentication

– Sender and receiver need to confirm each others
identity

3. Message Integrity

– Ensure that their communication has not been altered,
either maliciously or by accident during transmission

Cryptography

3

 Cryptography is the science of secret, or

hidden writing

 It has two main Components:

1. Encryption

– Practice of hiding messages so that they can not be

read by anyone other than the intended recipient

2. Authentication

– Ensuring that users of data/resources are the persons

they claim to be and that a message has not been

surreptitiously altered

Encryption - Cipher

4

 Cipher is a method for encrypting messages

 Encryption algorithms are standardized & published

 The key which is an input to the algorithm is secret
 Key is a string of numbers or characters

 If same key is used for encryption & decryption the algorithm is called
symmetric

 If different keys are used for encryption & decryption the algorithm is
called asymmetric

Plain Text Encryption

Algorithm

Key A Key B

Cipher Text Plain TextDecryption

Algorithm

Symmetric Encryption

5

 Algorithms in which the key for encryption
and decryption are the same are
Symmetric
 Example: Caesar Cipher

 Types:
1. Block Ciphers

– Encrypt data one block at a time (typically 64 bits, or
128 bits)

– Used for a single message

2. Stream Ciphers
– Encrypt data one bit or one byte at a time

– Used if data is a constant stream of information

Symmetric Encryption – Key Strength

6

 Strength of algorithm is determined by the size of the
key
 The longer the key the more difficult it is to crack

 Key length is expressed in bits
 Typical key sizes vary between 48bits and 448 bits

 Set of possible keys for a cipher is called key space
 For 40-bit key there are 240 possible keys

 For 128-bit key there are 2128 possible keys

 Each additional bit added to the key length doubles the
security

 To crack the key the hacker has to use brute-force
(i.e. try all the possible keys till a key that works is found)

 Super Computer can crack a 56-bit key in 24 hours

 It will take 272 times longer to crack a 128-bit key

(Longer than the age of the universe)

 Uses a pair of keys for encryption
 Public key for encryption

 Private key for decryption

 Messages encoded using public key can only be decoded
by the private key
 Secret transmission of key for decryption is not required

 Every entity can generate a key pair and release its public key

Asymmetric Encryption

Plain Text
Cipher

Public Key Private Key

Cipher Text Plain Text
Cipher

7

 Two most popular algorithms are RSA & El Gamal

 RSA

 Developed by Ron Rivest, Adi Shamir, Len Adelman

 Both public and private key are interchangable

 Variable Key Size (512, 1024, or 2048 buts)

 Most popular public key algorithm

 El Gamal

 Developed by Taher ElGamal

 Variable key size (512 or 1024 bits)

 Less common than RSA, used in protocols like PGP

Asymmetric Encryption

8

 Efficiency is lower than Symmetric Algorithms

 A 1024-bit asymmetric key is equivalent to 128-bit

symmetric key

 Potential for eavesdropping attack during

transmission of key

 It is problematic to get the key pair generated for

the encryption

Asymmetric Encryption - Weaknesses

9

 A message digest is a fingerprint for a document

 Purpose of the message digest is to provide proof that a document has not been
tampered with.

 Hash functions used to generate message digests are one way functions that have
following properties

 It must be computationally infeasible to reverse the function

 It must be computationally infeasible to construct two messages which which hash to the
same digest

 Some of the commonly used hash algorithms are

 MD5 – 128 bit hashing algorithm by Ron Rivest of RSA

 SHA & SHA-1 – 162 bit hashing algorithm developed by NIST

Authentication – Message Digests

Message
Message

Digest

Algorithm

Digest

10

 A message digest created with a key

 Creates security by requiring a secret key to be possesses
by both parties in order to retrieve the message

 Some of the commonly used hash algorithms are
 MD5 – 128 bit hashing algorithm by Ron Rivest of RSA

 SHA & SHA-1 – 162 bit hashing algorithm developed by NIST

Message Authentication Codes

Message
Message

Digest

Algorithm

Digest

Secret Key

11

Install Security Libraries

12

pip3 install setuptools_rust

pip3 install cryptography

pip3 install pycryptodome

Simple Symmetric Encryption Using AES

13

 Using AES symmetric encryption

from cryptography.fernet import Fernet
key = Fernet.generate_key()
print ("Key is ", key)
cipher_suite = Fernet(key)
cipher_text = cipher_suite.encrypt(b"A really secret message. Not for
prying eyes.")
print ("The cipher message is ", cipher_text)
plain_text = cipher_suite.decrypt(cipher_text)
print ("The plain message is ", plain_text)

Simple Symmetric Encryption Using RSA

14

 Public and private key generations

 Encryption and decryption

from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
import binascii
keyPair = RSA.generate(1024)

pubKey = keyPair.publickey()
print(f"Public key: (n={hex(pubKey.n)}, e={hex(pubKey.e)})")
pubKeyPEM = pubKey.exportKey()
print(pubKeyPEM.decode('ascii'))

print(f"Private key: (n={hex(pubKey.n)}, d={hex(keyPair.d)})")
privKeyPEM = keyPair.exportKey()
print(privKeyPEM.decode('ascii'))

msg = b'A message for encryption'
encryptor = PKCS1_OAEP.new(pubKey)
encrypted = encryptor.encrypt(msg)
print("Encrypted:", binascii.hexlify(encrypted))

decryptor = PKCS1_OAEP.new(keyPair)
decrypted = decryptor.decrypt(encrypted)
print('Decrypted:', decrypted)

Message Authentication using Sha2 hash

15

 Message Authentication

 Using Sha2 hash

import the library module
import hashlib

initialize a string
str = "NET445"

encode the string
encoded_str = str.encode()

create sha-2 hash objects initialized with the encoded string
hash_obj_sha224 = hashlib.sha224(encoded_str) # SHA224
hash_obj_sha256 = hashlib.sha256(encoded_str) # SHA256
hash_obj_sha384 = hashlib.sha384(encoded_str) # SHA384
hash_obj_sha512 = hashlib.sha512(encoded_str) # SHA512

print
print("\nSHA224 Hash: ", hash_obj_sha224.hexdigest())
print("\nSHA256 Hash: ", hash_obj_sha256.hexdigest())
print("\nSHA384 Hash: ", hash_obj_sha384.hexdigest())
print("\nSHA512 Hash: ", hash_obj_sha512.hexdigest())

References:

 Foundations of Python Network Programming Third

Edition by Brandon Rhodes (2014)

 James F. Kurose, and Keith W Ross, Computer

Networking: A Top-Down Approach,6th Edition

 Python 3 documentation

 https://wiki.python.org/moin/UdpCommunicat
ion

 https://www.w3schools.com/python/

 https://www.tutorialspoint.com/python/

16

https://www.w3schools.com/python/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/

