
Lecture6- Web Server

NET 445 – Internet Programming

Web Servers

2

 Web servers respond to Hypertext Transfer Protocol

(HTTP) requests

 from clients and send back a response

 containing a status code and often content such as HTML,

XML or JSON as well.

 Examples for web servers:

 Apache and Nginx (linux web servers)

 Internet Information Services (IIS) (for windows)

 Examples for web clients

 Google Chrome, Firefox, and Microsoft Edge.

Why are web servers necessary?

3

 The server and client speak the standardized language of
the World Wide Web.

 This standard language is why an old Mozilla Netscape
browser can still talk to a modern Apache or Nginx web
server,
 even if it cannot properly render the page design like a modern

web browser can.

 The basic language of the Web with the request and
response cycle from client to server then server back to
client remains the same
 as it was when the Web was invented by Tim Berners-Lee at

CERN in 1989.

 Modern browsers and web servers have simply extended
the language of the Web to incorporate new standards.

Web server implementations

4

 The conceptual web server idea can be implemented

in various ways. The following web server

implementations each have varying features,

extensions and configurations.

 The Apache HTTP Server has been the most commonly

deployed web server on the Internet for 20+ years.

 Nginx is the second most commonly used server for the

top 100,000 websites and often serves as a reverse proxy

for Python WSGI servers.

 Caddy is a newcomer to the web server scene and is

focused on serving the HTTP/2 protocol with HTTPS.

What is an HTTP Server?

5

 An HTTP web server is nothing but a process that is

running on your machine and does exactly two things:

 Listens for incoming http requests on a specific TCP socket

address (IP address and a port number which I will talk

about later)

 Handles this request and sends a response back to the

user.

Simple HTTP Server using Sockets

6

"HTTP/1.0 200 OK\n\nHello World"

 Create a Simple Python script open a socket

 Send a simple request with a message “Hello World”

Simple HTTP Server using Sockets

7

 Simple HTTP Server using Sockets

Define socket host and port
SERVER_HOST = "0.0.0.0"
SERVER_PORT = 8000
Create socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
server_socket.bind((SERVER_HOST, SERVER_PORT))
server_socket.listen(1)
print("Listening on port %s ..." % SERVER_PORT)

while True:
Wait for client connections
client_connection, client_address = server_socket.accept()

Get the client request
request = client_connection.recv(1024).decode()
print(request)

Send HTTP response
response = "HTTP/1.0 200 OK\n\nHello World"
client_connection.sendall(response.encode())
client_connection.close()

Close socket
server_socket.close()

Simple HTTP Server using http.server

8

 Python standard library: http.server

 comes with a in-built webserver which can be invoked

for simple web client server communication.

 The port number can be assigned programmatically

and the web server is accessed through this port.

 It is not a full featured web server which can parse

many kinds of file, it can parse simple static html files

and serve them by responding them with required

response codes.

Creating a simple HTML file to serve

9

 Creating a simple HTML file to serve

 Place this file in the local folder

<!DOCTYPE html>
<html>
<body>

<h1>This is a web page</h1>
<p>NET445 Internet Programming</p>

</body>
</html>

Simple HTTP Server using http.server

10

 Simple HTTP Server using http.server

 Place this script next to the HTML file

 Run the script and open the browser to

 http://127.0.0.1:8000

import http.server
import socketserver

PORT = 8000

handler = http.server.SimpleHTTPRequestHandler

with socketserver.TCPServer(("", PORT), handler) as httpd:
print("Server started at localhost:" + str(PORT))
httpd.serve_forever()

Flask Web Framework

11

 What is Web Framework?

 represents a collection of libraries and modules that

enables a web application developer to write applications

 without having to bother about low-level details such as

protocols, thread management etc.

 Flask is a web application framework written in

Python.

 It is developed by Armin Ronacher, who leads an

international group of Python enthusiasts named Pocco.

 Flask is based on the Werkzeug WSGI toolkit and Jinja2

template engine. Both are Pocco projects.

Flask Web Framework

12

 WSGI

 Web Server Gateway Interface (WSGI) has been adopted

as a standard for Python web application development.

 WSGI is a specification for a universal interface between

the web server and the web applications.

 Jinja2

 Jinja2 is a popular templating engine for Python.

 A web templating system combines a template with a

certain data source to render dynamic web pages.

Install Flask

13

 You can install flask using this command

pip3 install Flask

First Application in Flask

14

 In order to test Flask installation, type the following code

in the editor as Hello.py

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello_world():

return "Hello World"

if __name__ == "__main__":
app.run()

Simple Application in details

15

 Flask constructor takes the name of current module
(__name__) as argument.

 The route() function of the Flask class is a decorator, which tells
the application which URL should call the associated function.

 app.route(rule, options)

 The rule parameter represents URL binding with the function.

 The options is a list of parameters to be forwarded to the
underlying Rule object.

 In the above example, ‘/’ URL is bound with hello_world()
function. Hence, when the home page of web server is opened
in browser, the output of this function will be rendered.

 Finally the run() method of Flask class runs the application on
the local development server.

Flask – Routing

16

 URL ‘/net445’ rule is bound to the hello_net445() function.

 As a result, if a user visits http://localhost:5000/net445 URL, the output of

the hello_net445() function will be rendered in the browser.

 The add_url_rule() function of an application object is also available to bind

a URL with a function as in the above example, route() is used.

from flask import Flask
app = Flask(__name__)

@app.route("/")
def hello_world():

return "Hello World"

@app.route("/net445")
def hello_net445():

return "hello Net445"

if __name__ == "__main__":
app.run()

Flask – Variable Rules

17

 It is possible to build a URL dynamically, by adding variable parts to the rule

parameter.

 This variable part is marked as <variable-name>.

 It is passed as a keyword argument to the function with which the rule is

associated.

 In the following example, the rule parameter of route() decorator contains

<name> variable part attached to URL ‘/hello’.

from flask import Flask
app = Flask(__name__)

@app.route('/hello/<name>')
def hello_name(name):

return 'Hello %s!' % name

if __name__ == '__main__':
app.run(debug = True)

Flask – Variable Rules and Conversions

18

 In addition to the default string variable part, rules can be

constructed using the following converters −

from flask import Flask
app = Flask(__name__)

@app.route('/blog/<int:postID>')
def show_blog(postID):

return 'Blog Number %d' % postID

@app.route('/rev/<float:revNo>')
def revision(revNo):

return 'Revision Number %f' % revNo

if __name__ == '__main__':
app.run()

Sr.No. Converters & Description

1 int

accepts integer

2 float

For floating point value

3 path

accepts slashes used as directory separator character

Flask – Templates

19

 Flask will try to find the HTML file in the templates

folder, in the same folder in which this script is

present.

 Application folder

 Hello.py

 templates

 hello.html

jinja2 – Templates

20

 A web template contains HTML syntax interspersed

placeholders for variables and expressions (in these

case Python expressions) which are replaced values

when the template is rendered.

 The following code is saved as hello.html in the

templates folder.

<!doctype html>
<html>

<body>

<h1>Hello {{ name }}!</h1>

</body>
</html>

Simple Template in Flask

21

 You can install flask using this command

from flask import Flask, render_template
app = Flask(__name__)

@app.route('/hello/<user>')
def hello_name(user):

return render_template('hello.html', name = user)

if __name__ == '__main__':
app.run(debug = True)

jinja2 – Templates

22

 The jinja2 template engine uses the following

delimiters for escaping from HTML.

 {% ... %} for Statements

 {{ ... }} for Expressions to print to the template output

 {# ... #} for Comments not included in the template

output

 # ... ## for Line Statements

Advanced Template – HTML code

23

 named results.html

<!doctype html>
<html>

<body>
<table border = 1>

{% for key, value in result.items() %}
<tr>

<th> {{ key }} </th>
<td> {{ value }} </td>

</tr>
{% endfor %}

</table>
</body>

</html>

Advanced Template – Python Code

24

 Advanced Template – Python Code

from flask import Flask, render_template
app = Flask(__name__)

@app.route('/result')
def result():

dict = {'phy':50,'che':60,'maths':70}
return render_template('results.html', result = dict)

if __name__ == '__main__':
app.run(debug = True)

References:

 Foundations of Python Network Programming Third

Edition by Brandon Rhodes (2014)

 James F. Kurose, and Keith W Ross, Computer

Networking: A Top-Down Approach,6th Edition

 Python 3 documentation

 https://wiki.python.org/moin/UdpCommunicat
ion

 https://www.w3schools.com/python/

 https://www.tutorialspoint.com/python/

25

https://www.w3schools.com/python/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/

