
Lecture4- HTTP API and

Programming

NET 445 – Internet Programming

Web and HTTP

2

First, a review…

 web page consists of objects

 object can be HTML file, JPEG image, Java applet, audio

file,…

 web page consists of base HTML-file which includes

several referenced objects

 each object is addressable by a URL, e.g.,
www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

3

HTTP: hypertext transfer
protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives, (using
HTTP protocol) and
“displays”Web objects

 server: Web server sends
(using HTTP protocol)
objects in response to
requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

HTTP overview (continued)

4

uses TCP:

 client initiates TCP connection

(creates socket) to server,

port 80

 server accepts TCP

connection from client

 HTTP messages (application-

layer protocol messages)

exchanged between browser

(HTTP client) and Web server

(HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

❖ past history (state) must be
maintained

❖ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

HTTP connections

5

non-persistent HTTP

 at most one object sent

over TCP connection

 connection then

closed

 downloading multiple

objects required multiple

connections

persistent HTTP

 multiple objects can be

sent over single TCP

connection between

client, server

Application Layer2-6

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP

connection to HTTP server

(process) at

www.someSchool.edu on port 80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket.

Message indicates that client

wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to 10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Application Layer2-7

Non-persistent HTTP (cont.)

5. HTTP client receives response

message containing html file,

displays html. Parsing html file, finds

10 referenced jpeg objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Application Layer2-8

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request and
first few bytes of HTTP
response to return

 file transmission time

 non-persistent HTTP response
time =

2RTT+ file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer2-9

Persistent HTTP

non-persistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP

connection

 browsers often open

parallel TCP connections to

fetch referenced objects

persistent HTTP:

 server leaves connection

open after sending response

 subsequent HTTP messages

between same client/server

sent over open connection

 client sends requests as soon

as it encounters a referenced

object

 as little as one RTT for all

the referenced objects

Application Layer2-10

HTTP request message
 two types of HTTP messages: request, response

 HTTP request message:

 ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

Application Layer2-11

HTTP request message: general

format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer2-12

Uploading form input

POST method:

 web page often includes

form input

 input is uploaded to server

in entity body

URL method:

 uses GET method

 input is uploaded in URL

field of request line:
www.somesite.com/animalsearch?monkeys&banana

Application Layer2-13

Method types

HTTP/1.0:

 GET

 POST

 HEAD

 asks server to leave

requested object out of

response

HTTP/1.1:

 GET, POST, HEAD

 PUT

 uploads file in entity body

to path specified in URL

field

 DELETE

 deletes file specified in

the URL field

Application Layer2-14

HTTP response message

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

Application Layer2-15

HTTP response status codes

200 OK

 request succeeded, requested object later in this msg

301 Moved Permanently

 requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

 request msg not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

❖ status code appears in 1st line in server-to-
client response message.

❖ some sample codes:

Application Layer2-16

Trying out HTTP (client side) for

yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.

anything typed in sent

to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1

Host: cis.poly.edu

by typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark to look at captured HTTP request/response)

Install HTTP requests python library

17

 Requests is a Python module that you can use to send all

kinds of HTTP requests.

 It is an easy-to-use library with a lot of features ranging

from passing parameters in URLs to sending custom

headers and SSL Verification.

 Requests allow you to send HTTP/1.1 requests.

 You can add headers, form data, multi-part files, and

parameters with simple Python dictionaries, and access

the response data in the same way

 To install requests

pip3 install requests

The GET Request

18

 One of the most common HTTP methods is GET.

 The GET method indicates that you’re trying to get or

retrieve data from a specified resource.

 To make a GET request, invoke requests.get().

 To test this out, you can make a GET request to GitHub’s

Root REST API by calling get() with the following URL:

import requests
response = requests.get('https://api.github.com')
print (response.status_code)

Status Code

19

 The Status-Code element is a 3-digit integer where first digit of the Status-

Code defines the class of response and the last two digits do not have any

categorization role. There are 5 values for the first digit:

import requests
response = requests.get('https://api.github.com')

if response.status_code == 200:
print('Success!')

elif response.status_code == 404:
print('Not Found.')

S.N. Code and Description

1 1xx: Informational It means the request was received and the process is continuing.

2 2xx: Success It means the action was successfully received, understood, and accepted.

3 3xx: Redirection It means further action must be taken in order to complete the request.

4 4xx:Client Error It means the request contains incorrect syntax or cannot be fulfilled.

5 5xx: Server Error It means the server failed to fulfill an apparently valid request.

Content

20

 The response of a GET request often has some valuable

information, known as a payload, in the message body.

 Using the attributes and methods of Response, you can

view the payload in a variety of different formats.

 To see the response’s content in bytes, you use .content:

import requests
response = requests.get('https://api.github.com')
print (response.content)

Request in Text

21

 While .content gives you access to the raw bytes of the

response payload, you will often want to convert them

into a string using a character encoding such as UTF-8.

 response will do that for you when you access .text:

import requests
response = requests.get('https://api.github.com')
print (response.text)

Request in JSON

22

 f you take a look at the response, you’ll see that it is

actually serialized JSON content. To get a dictionary, you

could take the str you retrieved from .text and deserialize

 A simple way to accomplish this task is to use .json():

import requests
response = requests.get('https://api.github.com')
print (response.json())

HTTP Headers

23

 The response headers can give you useful information,

such as the content type of the response payload and a

time limit on how long to cache the response.

 To view these headers, access .headers:

import requests
response = requests.get('https://api.github.com')

print (response.headers)

Query String Parameters

24

 One common way to customize a GET request is to pass

values through query string parameters in the URL.

 To do this using get(), you pass data to params.

 For example, you can use GitHub’s Search API to look for

the requests library:

import requests
response = requests.get(

'https://api.github.com/search/repositories',
params={'q': 'requests+language:python'},

)

Inspect some attributes of the `requests` repository
json_response = response.json()
repository = json_response['items'][0]
print(f'Repository name: {repository["name"]}’)
print(f'Repository description: {repository["description"]}')

Downloading images using HTTP requests

25

 You can download an image using HTTP request

import requests
r =
requests.get('https://identity.ksu.edu.sa/sites/identity.ksu.edu.sa/files/imce
_images/ksu_masterlogo_colour_rgb.png')
print(r.content)

f = open('logo.png', 'wb')
f.write(r.content)
f.close()

References:

 Foundations of Python Network Programming Third

Edition by Brandon Rhodes (2014)

 James F. Kurose, and Keith W Ross, Computer

Networking: A Top-Down Approach,6th Edition

 Python 3 documentation

 https://wiki.python.org/moin/UdpCommunicat
ion

 https://www.w3schools.com/python/

 https://www.tutorialspoint.com/python/

26

https://www.w3schools.com/python/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/

