Lecture4- DNS API and Programming

NET 445 – Internet Programming

DNS: domain name system

people: many identifiers:

SSN, name, passport #

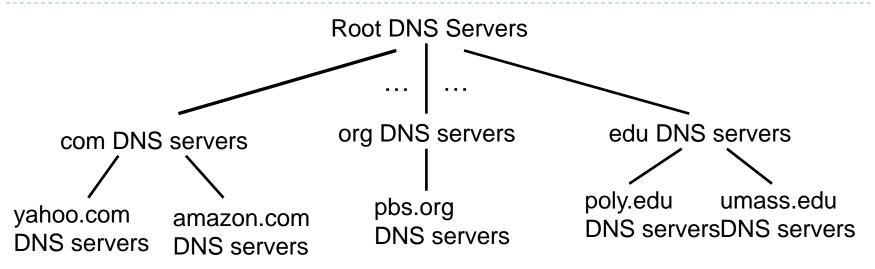
Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g.,
 www.yahoo.com used
 by humans
- Q: how to map between IP address and name, and vice versa ?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as applicationlayer protocol
 - complexity at network's "edge"

DNS: services, structure

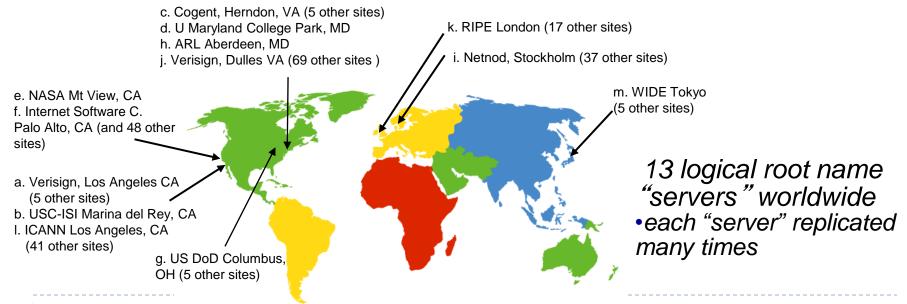

DNS services

- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- Ioad distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- single point of failure
- traffic volume
- distant centralized database
- maintenance
 - A: doesn't scale!

DNS: a distributed, hierarchical database



client wants IP for www.amazon.com; Ist approximation:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

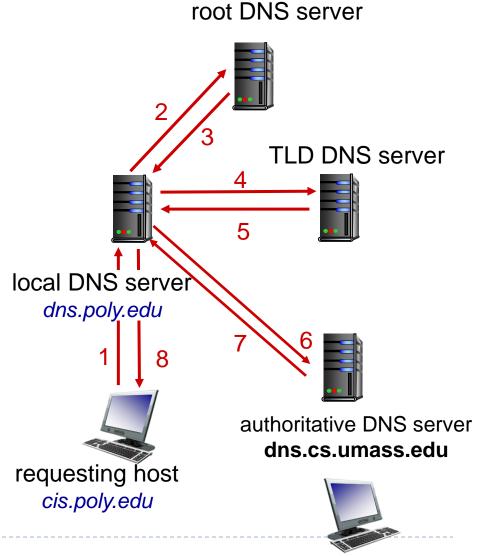
Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - > acts as proxy, forwards query into hierarchy

DNS name resolution

- Finding the IP address for a given hostname is called resolution and is done with the DNS protocol.
- Resolution:
 - Computer requests local name server to resolve
 - Local name server asks the root name server
 - Root returns the name server for a lower zone
 - Continue down zones until name server can answer

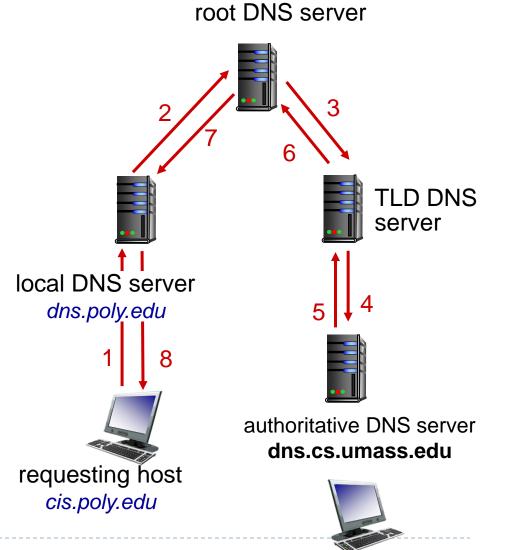
DNS protocol:


- Runs on UDP port 53, retransmits lost messages
- Caches name server answers for better performance

DNS name : resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:


- contacted server replies with name of server to contact
- "I don' t know this name, but ask this server"

gaia.cs.umass.edu

DNS name : resolution example

recursive query:
puts burden of name resolution on contacted name server
heavy load at upper levels of hierarchy?

gaia.cs.umass.edu

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-toaddress translation!)
 - if name host changes IP address, may not be known Internetwide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

- name is hostname
- value is IP address

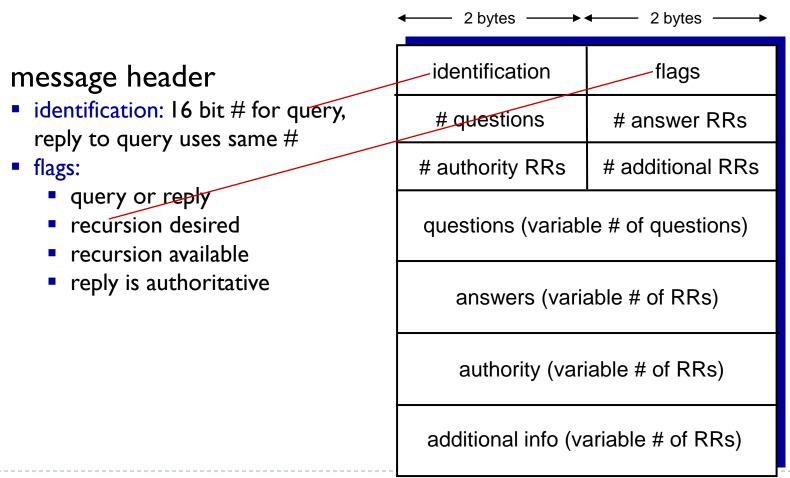
<u>type=NS</u>

- name is domain (e.g., foo.com)
- value is hostname of authoritative name server for this domain

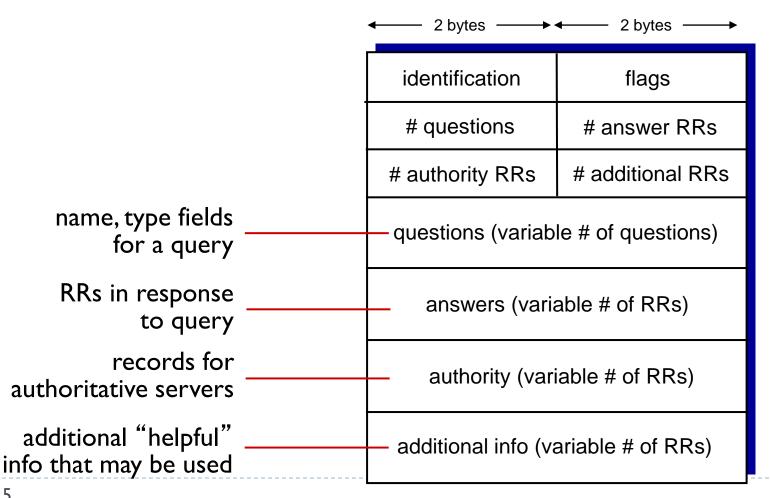
type=CNAME

- name is alias name for some "canonical" (the real) name
- www.ibm.com is really servereast.backup2.ibm.com
- value is canonical name

type=MX


 value is name of mailserver associated with name

DNS records


Record type	Purpose
А	IP Address record. Using a hostname to get an IPv4 adress.
AAAA	IP Address record. Using a hostname to get an IPv6 adress.
PTR	reverse DNS lookup. Using IP address to get hostname.
NS	Nameserver record responsible for the domain asked about.
мх	Mail Exchanger record. server responsible for handling email for the given domain.
SOA	Start of Authorities record describes some key data about the zone as defined by the zone administrator.
CNAME	Canonical Name or Alias, this allows providing an alternate name for a resource.
тхт	A generic Text record that provides descriptive data about domain.

DNS protocol, messages

query and reply messages, both with same message format

DNS protocol, messages

Inserting records into DNS

- example: new startup "Network Utopia"
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com

Install DNS libraires

Install pip to install python libraires

sudo apt install python3-pip

Install dnspython

pip3 install dnspython

- The dnspython module provides dns.resolver() helps to find out various records of a domain name.
 - The function takes two important parameters, the domain name, and the record type. Some of the record types with examples are listed below :
 - A Record: It is fundamental type of DNS record, here A stands for address. It shows the IP address of the domain.

```
# Import libraries
import dns.resolver
# Finding A record
result = dns.resolver.query('ksu.edu.sa', 'A')
# Printing record
for val in result:
    print('A Record : ', val.to_text())
```

- The dnspython module provides dns.resolver() helps to find out various records of a domain name.
 - The function takes two important parameters, the domain name, and the record type. Some of the record types with examples are listed below :
 - A Record: It is fundamental type of DNS record, here A stands for address. It shows the IP address of the domain.

```
# Import libraries
import dns.resolver
# Finding A record
result = dns.resolver.query('ksu.edu.sa', 'A')
# Printing record
for val in result:
    print('A Record : ', val.to_text())
```

AAAA Record: This is an IP address record, used to find the IP of the computer connected to the domain. It is conceptually similar to A record but specifies only the IPv6 address of the server rather than IPv4.

```
# Import libraries
import dns.resolver
# Finding A record
result = dns.resolver.query('ksu.edu.sa', 'AAAA')
# Printing record
for val in result:
    print('A Record : ', val.to_text())
```

PTR Record: PTR stands for pointer record, used to translate IP addresses to the domain name or hostname. It is used to reverse the DNS lookup.

```
# Import libraries
import dns.resolver
# Finding PTR record
result = dns.resolver.query('116.62.218.34.in-addr.arpa', 'PTR')
# Printing record
for val in result:
    print('PTR Record : ', val.to text())
```

- A CNAME record also known as Canonical Name Record
- a type of record in the Domain Name System (DNS) used to map a domain name as an alias for another domain.
- CNAME records always point to another domain name and never directly to an IP address. In the query method below we specify the CNAME parameter to get the CNAME value.

```
import dns
import dns.resolver
result = dns.resolver.query("mail.google.com","CNAME")
for cnameval in result:
    print (' cname target address:', cnameval.target)
```

References:

 Foundations of Python Network Programming Third Edition by Brandon Rhodes (2014)

James F. Kurose, and Keith W Ross, Computer Networking: A Top-Down Approach,6th Edition

- Python 3 documentation
- https://wiki.python.org/moin/UdpCommunicat ion
- https://www.w3schools.com/python/
- https://www.tutorialspoint.com/python/