
Lecture2- Email API and

Programming

NET 445 – Internet Programming

Electronic mail

2

Three major components:
 user agents

 mail servers

 simple mail transfer protocol:
SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages

 e.g., Outlook, Thunderbird,
iPhone mail client

 outgoing, incoming messages
stored on server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Electronic mail: mail servers

3

mail servers:

 mailbox contains incoming

messages for user

 message queue of outgoing

(to be sent) mail messages

 SMTP protocol between mail

servers to send email

messages

 client: sending mail server

 “server”: receiving mail

server

user mailbox

outgoing

message queue

mail

server

mail

server

mail

server

SMTP

SMTP

SMTP

user

agent

user

agent

user

agent

user

agent

user

agent

user

agent

Electronic Mail: SMTP [RFC 2821]

4

❖ uses TCP to reliably transfer email message from
client to server, port 25

❖ direct transfer: sending server to receiving server

❖ three phases of transfer
▪ handshaking (greeting)

▪ transfer of messages

▪ closure

❖ command/response interaction (like HTTP, FTP)
▪ commands: ASCII text

▪ response: status code and phrase

❖ messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

5

user

agent

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message to
her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP

connection

5) Bob’s mail server places the

message in Bob’s mailbox

6) Bob invokes his user agent

to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Sample SMTP interaction

6

S: 220 hamburger.edu

C: HELO crepes.fr

S: 250 Hello crepes.fr, pleased to meet you

C: MAIL FROM: <alice@crepes.fr>

S: 250 alice@crepes.fr... Sender ok

C: RCPT TO: <bob@hamburger.edu>

S: 250 bob@hamburger.edu ... Recipient ok

C: DATA

S: 354 Enter mail, end with "." on a line by itself

C: Do you like ketchup?

C: How about pickles?

C: .

S: 250 Message accepted for delivery

C: QUIT

S: 221 hamburger.edu closing connection

Mail message format

7

SMTP: protocol for exchanging
email msgs

RFC 822: standard for text
message format:

 header lines, e.g.,

 To:

 From:

 Subject:

different from SMTP MAIL
FROM, RCPT TO:
commands!

 Body: the “message”
 ASCII characters only

header

body

blank

line

Mail access protocols

8

 SMTP: delivery/storage to receiver’s server

 mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]: authorization, download

 IMAP: Internet Mail Access Protocol [RFC 1730]: more features,
including manipulation of stored msgs on server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent

user

agent

Application Layer

POP3 (more) and IMAP

more about POP3

 previous example uses

POP3 “download and

delete” mode

 Bob cannot re-read e-

mail if he changes client

 POP3 “download-and-

keep”: copies of messages

on different clients

 POP3 is stateless across

sessions

IMAP

 keeps all messages in one

place: at server

 allows user to organize

messages in folders

 keeps user state across

sessions:

 names of folders and

mappings between

message IDs and folder

name

9

Python Local SMTP server

10

 Starting a local smtp server

 If you prefer working in the local environment, the local

SMTP debugging server might be an option. For this

purpose.

 Python offers an smtpd module.

 It has a DebuggingServer feature, which will discard

messages you are sending out and will print them to

stdout.

 It is compatible with all operations systems.

python3 -m smtpd -c DebuggingServer -n localhost:1025

Example: Sending an email via Python

11

 using localhost sever

#!/usr/bin/python3
import smtplib
from smtplib import SMTPException
sender = 'sender@email.com'
receivers = ['Person@email.com']

message = """From: From Person <sender@email.com >
To: To Person < Person@email.com >
Subject: SMTP e-mail test
This is a test e-mail message.
"""
try:

smtpObj = smtplib.SMTP('localhost',1025)
smtpObj.sendmail(sender, receivers, message)
print ("Successfully sent email")

except SMTPException:
print ("Error: unable to send email")

Example: Sending an email via Python

12

 After sending the email

 The SMTP server will show the message

Testing with Fake Email servers

13

 Testing with real email server is difficult since it has

security issues.

 Some websites provide fake email servers to test your

script before send real email.

 Mailtrap.io

 provides a fake SMTP server to test, view and share emails

sent.

 You need to sign up and get your user authentication

information from Mailtrap.io

Mailtrap.io

14

Example: Sending an email via Mailtrap.io

15

 Sending email

import smtplib

sender = "Private Person <from@example.com>"
receiver = "A Test User <to@example.com>"

message = f"""\
Subject: Hi Mailtrap
To: {receiver}
From: {sender}

This is a test e-mail message."""

with smtplib.SMTP("smtp.mailtrap.io", 2525) as server:
server.login("66ec25c69d7990", "2676f9fac307e2")
server.sendmail(sender, receiver, message)

Example: Sending an email via Mailtrap.io

16

 Once the email is sent using Python

 The email will appear the inbox

Example: Sending an email with HTML

content

17

 Sending an email with HTML content

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart

sender = "Private Person <from@example.com>"
receiver = "A Test User <to@example.com>"

sender_email = "mailtrap@example.com"
receiver_email = "new@example.com"

message = MIMEMultipart("alternative")
message["Subject"] = "multipart test"
message["From"] = sender_email
message["To"] = receiver_email
Write the plain text part
text = """\ Hi, Check out the new post on the Mailtrap blog: SMTP Server for Testing: Cloud-based or Local?
https://blog.mailtrap.io/2018/09/27/cloud-or-local-smtp-server/ Feel free to let us know what content would be useful for you!"""

write the HTML part
html = """\ <html> <body> <p>Hi,
 Check out the new post on the Mailtrap blog:</p> <p>SMTP Server for Testing: Cloud-based or Local?</p> <p> Feel free
to let us know what content would be useful for you!</p> </body> </html> """

convert both parts to MIMEText objects and add them to the MIMEMultipart message
part1 = MIMEText(text, "plain")
part2 = MIMEText(html, "html")
message.attach(part1)
message.attach(part2)

with smtplib.SMTP("smtp.mailtrap.io", 2525) as server:
server.login("66ec25c69d7990", "2676f9fac307e2")
server.sendmail(sender_email, receiver_email, message.as_string())

Example: Sending an email via Mailtrap.io

18

 An email testing using HTML content

Example: Sending Email using Gmail

19

 IMAP protocol

import smtplib
from email.mime.text import MIMEText

smtp_ssl_host = 'smtp.gmail.com'
smtp_ssl_port = 465

from_addr = 'net445ksu@gmail.com'
to_addrs = ['mjalenazi@ksu.edu.sa']

the email lib has a lot of templates
for different message formats,
on our case we will use MIMEText
to send only text
message = MIMEText('Hello World. Hi from Ubuntu Mate 18')
message['subject'] = 'Hello'
message['from'] = from_addr
message['to'] = ', '.join(to_addrs)

username = 'net445ksu@gmail.com'
password = 'Ksu@12345'
server = smtplib.SMTP_SSL(smtp_ssl_host, smtp_ssl_port)
to interact with the server, first we log in
and then we send the message
server.login(username, password)
server.sendmail(from_addr, to_addrs, message.as_string())
server.quit()

IMAP

20

 IMAP allows the client program to manipulate the e-mail

message on the server without downloading them on the

local computer.

 The e-mail is hold and maintained by the remote server.

 It enables us to take any action such as downloading,

delete the mail without reading the mail.

 It enables us to create, manipulate and delete remote

message folders called mail boxes.

 IMAP enables the users to search the e-mails.

 It allows concurrent access to multiple mailboxes on

multiple mail servers.

IMAP Commands

21

S.N. Command Description

1 IMAP_LOGIN
This command opens the connection.

2 CAPABILITY
This command requests for listing the capabilities that the server supports.

3 NOOP
This command is used as a periodic poll for new messages or message status updates during a

period of inactivity.

4 SELECT
This command helps to select a mailbox to access the messages.

5 EXAMINE
It is same as SELECT command except no change to the mailbox is permitted.

6 CREATE
It is used to create mailbox with a specified name.

7 DELETE
It is used to permanently delete a mailbox with a given name.

8 RENAME
It is used to change the name of a mailbox.

9 LOGOUT
This command informs the server that client is done with the session. The server must send

BYE untagged response before the OK response and then close the network connection.

Example: Sending Email using Gmail

22

 IMAP protocol

import imaplib
import pprint

imap_host = 'imap.gmail.com'
imap_user = 'net445ksu@gmail.com'
imap_pass = 'Ksu@12345'

connect to host using SSL
imap = imaplib.IMAP4_SSL(imap_host)

login to server
imap.login(imap_user, imap_pass)

imap.select('Inbox')

tmp, data = imap.search(None, 'ALL')
for num in data[0].split():

tmp, data = imap.fetch(num, '(RFC822)')
print('Message: {0}\n'.format(num))
pprint.pprint(data[0][1])
break

imap.close()

POP3

23

 POP is an application layer internet standard protocol.

 Since POP supports offline access to the messages, thus

requires less internet usage time.

 POP does not allow search facility.

 In order to access the messaged, it is necessary to

download them.

 It allows only one mailbox to be created on server.

 POP commands are generally abbreviated into codes of

three or four letters. Eg. STAT.

POP3 Commands

24

S.N. Command Description

1 LOGIN

This command opens the connection.

2 STAT

It is used to display number of messages currently in the mailbox.

3 LIST

It is used to get the summary of messages where each message summary is shown.

4 RETR

This command helps to select a mailbox to access the messages.

5 DELE

It is used to delete a message.

6 RSET

It is used to reset the session to its initial state.

7 QUIT

It is used to log off the session.

Example: Sending Email using Gmail

25

 POP3 protocol

import poplib

user = 'net445ksu@gmail.com'
Connect to the mail box
Mailbox = poplib.POP3_SSL('pop.googlemail.com', '995')
Mailbox.user(user)
Mailbox.pass_('Ksu@12345')
NumofMessages = len(Mailbox.list()[1])
for i in range(NumofMessages):

for msg in Mailbox.retr(i+1)[1]:
print (msg)

Mailbox.quit()

References:

 Foundations of Python Network Programming Third

Edition by Brandon Rhodes (2014)

 James F. Kurose, and Keith W Ross, Computer

Networking: A Top-Down Approach,6th Edition

 Python 3 documentation

 https://wiki.python.org/moin/UdpCommunicat
ion

 https://www.w3schools.com/python/

 https://www.tutorialspoint.com/python/

26

https://www.w3schools.com/python/
https://www.w3schools.com/python/
https://www.tutorialspoint.com/python/

