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A B S T R A C T

We introduce novel methodological techniques for decision-making with multiple attributes utilizing logarith-
mic square root neutrosophic vague sets. One important thing is that we improved decision-making by adding
logarithmic square root neutrosophic ambiguous weighted operators. Logarithmic square root, neutrosophic
imprecise weighted averaging, geometric procedures, and expanded versions of these are some of the data
processing methodologies that we explore. The use of Hamming distances and Euclidean distances in decision-
making situations is illustrated by real-world instances. To clarify the basic properties of these sets, the
research uses an algebraic framework. Numerous domains make use of neural networks, including translation,
medical diagnosis, and picture and speech recognition. Developing multipurpose artificially intelligent robots
with analytical, functional, visual, interactive, and textual capabilities relies heavily on the synergy between
computer science and machine tool technology. This is especially true when it comes to the evolution of
artificial intelligence. The operating procedures, expenses, time, and externalizes of an artificially intelligent
robot system should be considered while assessing its quality. Finding the best answer from a list of possibilities
is made easier with the help of expert views and established criteria. By comparing them to other methods, we
verify and show that the suggested models work. The study’s findings highlight the importance of the research.

1. Introduction

Robotics has its roots in the early industrial era, when basic automation devices were created to carry out repetitive and ordinary activities. More
developments in control engineering and computers in the ensuing decades made it possible to create increasingly complex robots that could carry
out a larger variety of activities. George Devol and Joseph Engelberger unveiled the first industrial robot in 1956, which was a huge turning point in
the history of robotics. Robots became a common tool in the manufacturing sector by the 1970s, especially in the manufacturing of automobiles. The
subsequent decades saw the creation of more compact and adaptable robots that could be employed in a variety of industries thanks to developments
in electronic and software engineering as well as shrinking. Modern robotics is developing quickly thanks to the combination of machine learning
(ML) and artificial intelligence (AI), which allows robots to interact with their surroundings on their own and carry out increasingly complicated
tasks. The most well-known sectors using robotics extensively include manufacturing, healthcare, logistics, and agriculture (Vijayakuymar and
Suresh, 2022; Oliveira et al., 2021). Robots can now evaluate enormous volumes of data, draw lessons from their experiences, and modify their
actions as necessary thanks to AI and ML algorithms (Soori et al., 2023). A comprehensive evaluation of current work on ML and human–robot
collaboration (HRC) was carried out by Semeraro et al. (2023) A thorough assessment of the literature on the applications and outcomes of
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Abbreviations

DM Decision making
MADM Multiple attribute decision-making
FS Fuzzy set
IVFS Interval-valued fuzzy set
IFS Intuitionistic fuzzy set
PyFS Pythagorean fuzzy set
PFS Picture fuzzy set
IVPFS Interval-valued Pythagorean fuzzy set
SFS Spherical fuzzy set
NS Neutrosophic set
MG Membership grade
NMG Non-membership grade
TMG Truth membership grade
FMG False membership grade
ED Euclidean distance
HD Hamming distance
VS Vague set
LSRNSVS Logarithmic square root neutrosophic vague set
LSRNSVN Logarithmic square root neutrosophic vague number
LSRNSVWA Logarithmic square root neutrosophic vague weighted averaging
LSRNSVWG Logarithmic square root neutrosophic vague weighted geometric
LSRGNSVWA Logarithmic square root generalized neutrosophic vague weighted

averaging
LSRGNSVWG Logarithmic square root generalized neutrosophic vague weighted

geometric

intelligent physical robots in the healthcare industry was finished by Huang et al. (2023). Robots are employed in a variety of production processes
because of their accuracy, consistency, and speed, including welding, assembling, and packaging. Another industry where robots can be extremely
helpful to medical personnel in diagnosing, operating, and recovering from injuries is healthcare. Robots can be used in agriculture for a variety
of tasks, such as planting, harvesting, and fertilizing crops. They offer benefits like cost-effectiveness, efficiency and precision.

Kaplan and Haenlein (2020) discussed the concept of AI. The concept of major economies engaging in substantial policy activities to promote AI
research and development is explained by Margetts and C (2019). Among the key technical subsystems that construct the current AI technological
paradigm are machine learning, neural networks, natural language processing (NLP), smart robots, knowledge graphs, and expert systems (Cresswell
et al., 2020; Yablonsky, 2019). In addition to ethical concerns, AI also poses a risk to society in terms of the impacts it will have on democracy
and the labor market. Technology assessment (TA) activities based on interdisciplinary TA are necessary to assess these risks and opportunities.
A number of studies have also claimed that AI can have an impact on all economic and social sectors, making it a general-purpose technology.
The development of deep learning technology will not only allow online platforms to reap market profits, but also provide social governance tools
that are highly efficient. Moreover, AI technology has the potential to transform social structures as it becomes increasingly applied in specific
economic and financial domains (Klinger et al., 2018; Rasskazov, 2020).

As real-world systems continually evolve, it can be challenging for decision-makers to choose the best course of action. It is possible to reduce
a number of goals to a single one, despite the difficulty. The restriction of people’s motivations, goals, and viewpoints was difficult for many
businesses. While making decisions, people or committees must consider multiple goals at once. Based on this view, decision-makers are prevented
from selecting the best course of action, the one that meets all practical requirements. Therefore, more practical and reliable methods are developed
for identifying the best option for decision-makers. Agostini et al. (2017) discussed the concept of an efficient interactive decision-making (DM)
framework for robotic applications. Many authors deal with the level of harmful emissions from courier companies and their impact on the
environment (Lazarević et al., 2020; Lazarević and Dobrodolac, 2020). Fulfilling the high expectations of customers is very challenging, therefore
some authors propose meta-heuristic algorithms to be used as a support in optimizing last-mile assignment problems (Zhang et al., 2022). Choosing
the appropriate vehicles and transportation modes for last-mile delivery is also an intricate question recently analyzed in the literature (Simić et al.,
2021; S̆vadlenka et al., 2020). Through technology development, we are in a position today to introduce vehicles based on the implementation
of artificial intelligence, i.e. last-mile delivery robots. In the literature, such robots are also called autonomous delivery vehicles (Lu et al., 2023;
Lazarević et al., 2023).

Decision-makers find it increasingly difficult to identify the optimal solution as real-world systems become increasingly complex. Selecting the
best option is possible despite the difficulty of deciding between alternatives. Opportunities, objectives, and viewpoint constraints are challenging
to create for many firms. In line with this, when DM, individuals or groups should consider multiple objectives at the same time. A wide variety of
MADM-related issues are dealt with every day. Our DM abilities need to be improved as a result. This field of study has been studied by a variety
of researchers using a range of methods. There are several uncertain theories proposed by them to deal with the uncertainties, including fuzzy
set (FS) (Zadeh, 1965), intuitionistic fuzzy set (IFS) (Atanassov, 1986), interval valued FS (IVFS) (Gorzalczany, 1987), vague set (Biswas, 2006),
Pythagorean fuzzy set (PyFS) (Yager, 2014), IVPFS (Peng and Yang, 2015), spherical FS (SFS) (Ashraf et al., 2019). A membership grade (MG)
indicates how well an FS fits into the specified set ranging from 0 to 1. An IFS concept was later introduced by Atanassov (1986), in which each
object has two MGs positive 𝜉 and negative 𝛽 and satisfies 0 ≤ 𝜉 + 𝛽 ≤ 1, for 𝜉, 𝛽 ∈ [0, 1]. Yager (2014) developed the concept of PyFSs, which
are defined by their MGs and grade of non-memberships (NMGs) under the condition that 𝜉 + 𝛽 ≥ 1 to 𝜉2 + 𝛽2 ≤ 1. Extensive research has been

onducted on the implementation of IFSs and PyFSs in several fields. They still have limited skills in expressing information. Consequently, the
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experts still had difficulties conveying the information in these sets and their associated information. The concept of a picture fuzzy set (PFS) was
developed by Cuong and Kreinovich to overcome this information. Therefore, it has been noted that PFS is an expanded version of IFS that can
accommodate additional ambiguities. In PFS, it was observed that MG 𝜉, neutral 𝜁 and non-MG 𝜈 with 0 ≤ 𝜉+ 𝜁 + 𝜈 ≤ 1; for 𝜉, 𝜁 , 𝜈 ∈ [0, 1]. Using the
FS definition will ensure that expert opinions are conveyed, such as ‘‘yes’’, ‘‘abstain’’, ‘‘no’’, and ‘‘refusal’’, while also avoiding missing evaluation
etails and encouraging the consistency of the acquired information between the actual decision environment and the evaluation data. There are
any applications and studies of PFS, but its concept has not been widely studied. Ashraf et al. (2019) defined the spherical fuzzy set (SFS) for

ome AOs with MADM. In SFS, under the condition that 0 ≤ 𝜉2 + 𝜁2 + 𝜈2 ≤ 1 rather than 0 ≤ 𝜉 + 𝜁 + 𝜈 ≤ 1. Linguistic spherical fuzzy AOs were
roposed by Jin et al. (2019) and discussed in MADM problems. SFSs and their applications in DM were introduced by Rafiq et al. (2019). A DM
roblem is a property in which 𝜉2 + 𝜁2 ≥ 1. Senapati and Yager (2020) proposed the concept of FFS in 2019. A characteristic feature of MG and
MG is that their 0 ≤ 𝜉3 + 𝜁3 ≤ 1. A geometric AO on interval-valued PyFS (IVPFS) was discussed by Rahman et al. (2017). Rahman et al. (2018)

ntroduced the concept of IVPFS using Einstein AO as an effective method for MAGDM. Peng and Yang (2015) interacted interval valued PyFSs
ith aggregation operators (AOs).

Yager (2014) developed PyFS, which is characterized by a square sum of its MG and NMG not exceeding one. In order to generalize IFS, Yager
sed PyFS to build a model. A new concept was proposed by Yager (2016) in light of society’s continuous complexity and theory development.
he MG and NMG in the 𝑞-rung orthogonal pair FS (𝑞-ROFS) have power 𝑞, but the sum can never exceed one. The IFSs and PyFSs can all be
onsidered special cases of 𝑞-ROFSs, therefore they are general. The use of q-ROFSs can thus express fuzzy information in a broader range. Because
he parameter 𝑞 can be adjusted, 𝑞-ROFSs are flexible and better suited to uncertain environments. An increase in 𝑞 can be made as ambiguity in
ecision information increases. It is possible that some experts are influenced by both their own desires and their surroundings. Therefore, they may
ave an MDG of 0.95 and an NMG of 0.55 when evaluating certain DM things. The fuzzy information cannot be described by IFNs and PFNs, but
-ROFNs can be described if parameter 𝑞 is increased. Due to this, the 𝑞-ROFS is more flexible and suitable for describing uncertain data. IVPyFSs
ere created by Yang et al. in conjunction with the MADM (Yang and Chang, 2020) aggregating operations. Al-shami et al. (2022) examined square

oot FS (SRFS) and its weighted aggregated operators in the context of DM.
Smarandache (1999) introduced a new theory called the NSS. IFSs and FSs differ from each other in that they are both neutral cognitive

ystems. Neutosophy studies neutral cognition. Accordingly, the truth degree (TD), the indeterminacy degree (ID), and the falsehood degree (FD)
re assigned to each assertion. For each of the components of the universe in the NSS set, the degree of TD, ID, and FD falls into the range of [0, 1].
t has been shown from a philosophical standpoint that an NSS can generalize a classical set, an FS, an IFS, etc. Smarandache (1999) invented the
ythagorean NSIV set (PNSIVS). Vagues sets (VSs) were introduced in Biswas (2006). There are two functions in VSs, a truth-membership function
𝑣 and a false-membership function 𝑓𝑣. Here, 𝑡𝑣(𝑥) represents the lower bound on the grade of membership for 𝑥, and 𝑓𝑣(𝑥) represents the lower
ound on the negation for 𝑥 derived from the evidence against 𝑥. In [0, 1], 𝑡𝑣(𝑥) and 𝑓𝑣(𝑥) which sum does not exceed 1. VSs have a number of
roven applications (Bustince and Burillo, 1996; Kumar et al., 2007; Wang et al., 2006). Ejegwa (2018) discussed and extended distance metrics for
FSs, such as Hamming distances (HDs), Euclidean distances (EDs), normalized HDs, and normalized EDs. Palanikumar et al. (2022) investigated
he Pythagorean NSNV AO using MADM. We see that the majority of the distance functions for PNSNIVSs are generalized in the Pythagorean NSIV
et (PNSIVS).

According to Zhang and Xu (2014), PyFS based on TOPSIS should be generalized to include MCDM. A number of practical MADM problems
ere discussed by Hwang and Yoon (1981). Using MCDM with bipolar FS, Jana and Pal (2019) proposed a robust technique for handling n-
alued single-valued soft sets. Ullah et al. (2019) for their description of distance measuring for sophisticated PyFS with practical applications in
attern recognition. A recently presented MCDM approach using single-valued trigonometric number (SVTrN) mappings was developed by Jana
nd Pal (2021) using a new strategy for NSS dombi power AOs. Palanikumar et al. (2023) developed the medical robotic engineering management
n the interval neutrosophic square root approach. Palanikumar et al. (2024) discussed the concept of q-rung vague sets using multi-criteria
ecision-making. Abed et al. (2023) studied neutrosophic relations in group theory.

The goal of this study is to clarify the significance of LSRNSVS data. We use aggregation procedures to extract data from LSRNSVS. As an
xample, we will create a rating with these operators and apply it to DM issues. Consequently, the work’s main contributions are as follows:

1. Several algebraic properties of LSRNSVS have been established, such as associativity, distributivity, and idempotency.
2. Am LSRNSVN is characterized by HD and ED. The purpose of this method is to calculate the ED distance between two LSRNSVSs. In addition,

we have discussed the idea of converting LSRNSVNs into NFNs as well.
3. It is the purpose of this study to illustrate numerically how LSRNSVNs can be used to apply MADMs and AOs in real-world scenarios. The

LSRNSVN requires an algorithm to be developed. In addition, a normalized decision matrix must be determined by applying LSRNSVNs to
the response matrix.

4. A value must be derived for each concept discussed in the LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG.
5. The decision-maker can now use LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG operators in a flexible manner to choose the

ranking result based on their preference. As a result of its many advantages, we propose an extremely flexible method in this paper.

he seven sections of the paper are listed below. The introduction is located in Section 1. Section 2 provides a brief overview of the ideas involved.
he LSRNSVN-based MADM and its processes are discussed in Section 3. The distance between LSRNSVNs is used by Section 4 to communicate
ver MADM. The MADM for LSRNSVN based on a few aggregating processes is discussed in Section 5. There is a mathematical example, analysis,
nd discussion of the MADM algorithm based on LSRNSV data in Section 6. There is a conclusion in Section 7.

. Preliminaries

The following section will briefly review some key concepts related to our future studies.

efinition 1 (Yager, 2014). Let X be the universe, PyFS 𝜒 =
{

𝜚,
⟨

𝛥T
𝜒 (𝜚), 𝛥

F
𝜒 (𝜚)

⟩

|

|

|

𝜚 ∈ X
}

, 𝛥T
𝜒 ∶ X → [0, 1] and 𝛥F

𝜒 ∶ X → [0, 1] are denotes the MD
nd NMD of 𝜚 ∈ X to 𝜒 , respectively and 0 ⪯ (𝛥T

𝜒 (𝜚))
2 + (𝛥F

𝜒 (𝜚))
2 ⪯ 1. For 𝜒 =

⟨

𝛥T
𝜒 , 𝛥

F
𝜒
⟩

is called a Pythagorean fuzzy number (PyFN).

efinition 2 (Al-shami et al., 2022). The SRFS 𝜒 =
{

𝜚,
⟨

𝛥T
𝜒 (𝜚), 𝛥

F
𝜒 (𝜚)

⟩

|

|

|

𝜚 ∈ X
}

, 𝛥T
𝜒 ∶ X → [0, 1] and 𝛥F

𝜒 ∶ X → [0, 1] are denotes the MD and NMD of

∈ X to 𝜒 , respectively and 0 ⪯ (𝛥T(𝜚))2 +
√

𝛥F (𝜚) ⪯ 1. For 𝜒 =
⟨

𝛥T , 𝛥F⟩ is called a square root fuzzy number (SRFN).
𝜒 𝜒 𝜒 𝜒
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Definition 3 (Peng and Yang, 2015). The PyIVFS ⃖⃖⃗𝜒 =
{

𝜚,
⟨

⃖⃖⃖⃖⃗𝛥T
𝜒 (𝜚),

⃖⃖⃖⃖⃗𝛥F
𝜒 (𝜚)

⟩

|

|

|

𝜚 ∈ X
}

, where ⃖⃖⃖⃖⃗𝛥𝑇
𝜒 ∶ X → 𝐼𝑛𝑡([0, 1]) and ⃖⃖⃖⃖⃗𝛥𝐹

𝜒 ∶ X → 𝐼𝑛𝑡([0, 1]) are denotes the

D and NMD of 𝜚 ∈ X to 𝜒 , respectively, and 0 ⪯ (𝛥T𝑢
𝜒 (𝜚))2 + (𝛥F𝑢

𝜒 (𝜚))2 ⪯ 1. For ⃖⃖⃗𝜒 =
⟨[

𝛥T𝑙
𝜒 , 𝛥T𝑢

𝜒

]

,
[

𝛥F𝑙
𝜒 , 𝛥F𝑢

𝜒

]⟩

is called a Pythagorean interval-valued
uzzy number (PyIVFN).

efinition 4 (Peng and Yang, 2015). Let ⃖⃖⃗𝜒 =
⟨

[𝛥T𝑙 , 𝛥T𝑢], [𝛥F𝑙 , 𝛥F𝑢]
⟩

, ⃖⃖⃗𝜒1 =
⟨

[𝛥T𝑙
1 , 𝛥T𝑢

1 ], [𝛥F𝑙
1 , 𝛥F𝑢

1 ]
⟩

and ⃖⃖⃗𝜒2 =
⟨

[𝛥T𝑙
2 , 𝛥T𝑢

2 ], [𝛥F𝑙
2 , 𝛥F𝑢

2 ]
⟩

be the PyIVFNs,
and 𝛤 ≻ 0. Then,

1. ⃖⃖⃗𝜒1
⋀

⃖⃖⃗𝜒2 =
⎡

⎢

⎢

⎣

[√

(𝛥T𝑙
1 )2 + (𝛥T𝑙

2 )2 − (𝛥T𝑙
1 )2 ⋅ (𝛥T𝑙

2 )2,
√

(𝛥T𝑢
1 )2 + (𝛥T𝑢

2 )2 − (𝛥T𝑢
1 )2 ⋅ (𝛥T𝑢

2 )2
]

,
[

𝛥F𝑙
1 ⋅ 𝛥F𝑙

2 , 𝛥F𝑢
1 ⋅ 𝛥F𝑢

2

]

⎤

⎥

⎥

⎦

,

2. ⃖⃖⃗𝜒1
⋁

⃖⃖⃗𝜒2 =
⎡

⎢

⎢

⎣

[

𝛥T𝑙
1 ⋅ 𝛥T𝑙

2 , 𝛥T𝑢
1 ⋅ 𝛥T𝑢

2

]

,
[√

(𝛥F𝑙
1 )2 + (𝛥F𝑙

2 )2 − (𝛥F𝑙
1 )2 ⋅ (𝛥F𝑙

2 )2,
√

(𝛥F𝑢
1 )2 + (𝛥F𝑢

2 )2 − (𝛥F𝑢
1 )2 ⋅ (𝛥F𝑢

2 )2
]

⎤

⎥

⎥

⎦

,

3. 𝛤 ⋅ ⃖⃖⃗𝜒 =
[

[

√

1 −
(

1 − (𝛥T𝑙)2
)𝛤 ,

√

1 −
(

1 − (𝛥T𝑢)2
)𝛤

]

,
[

(𝛥F𝑙)𝛤 , (𝛥F𝑢)𝛤
]

]

,

4. ⃖⃖⃗𝜒𝛤 =
[

[

(𝛥T𝑙)𝛤 , (𝛥T𝑢)𝛤
]

,
[

√

1 −
(

1 − (𝛥F𝑙)2
)𝛤 ,

√

1 −
(

1 − (𝛥F𝑢)2
)𝛤

]

]

.

Definition 5 (Peng and Yang, 2015). For any PyIVFN ⃖⃖⃗𝜒 =
⟨

[𝛥T𝑙 , 𝛥T𝑢], [𝛥F𝑙 , 𝛥F𝑢]
⟩

, the score function of ⃖⃖⃗𝜒 is

𝑆(⃖⃖⃗𝜒) = 1
2

(

(𝛥T𝑙)2 + (𝛥T𝑢)2 − (𝛥F𝑙)2 − (𝛥F𝑢)2
)

, 𝑆(⃖⃖⃗𝜒) ∈ [−1, 1],

Accuracy function of ⃖⃖⃗𝜒 is

𝐻(⃖⃖⃗𝜒) = 1
2

(

(𝛥T𝑙)2 + (𝛥T𝑢)2 + (𝛥F𝑙)2 + (𝛥F𝑢)2
)

, 𝐻(⃖⃖⃗𝜒) ∈ [0, 1].

Definition 6. For any SRIVFN ⃖⃖⃗𝜒 =
⟨

[𝛥T𝑙 , 𝛥T𝑢], [𝛥F𝑙 , 𝛥F𝑢]
⟩

, the score function of ⃖⃖⃗𝜒 is

𝑆(⃖⃖⃗𝜒) = 1
2

(

(𝛥T𝑙)2 + (𝛥T𝑢)2 −
√

𝛥F𝑙 −
√

𝛥F𝑢
)

, 𝑆(⃖⃖⃗𝜒) ∈ [−1, 1],

ccuracy function of ⃖⃖⃗𝜒 is

𝐻(⃖⃖⃗𝜒) = 1
2

(

(𝛥T𝑙)2 + (𝛥T𝑢)2 +
√

𝛥F𝑙 +
√

𝛥F𝑢
)

, 𝐻(⃖⃖⃗𝜒) ∈ [0, 1].

Definition 7 (Smarandache, 1999). The NSS 𝜒 =
{

𝜚,
⟨

𝜚T𝜒 (𝜚), 𝜚
I
𝜒 (𝜚), 𝜚

F
𝜒 (𝜚)

⟩

|

|

|

𝜚 ∈ X
}

, where 𝜚T𝜒 ∶ X → [0, 1], 𝜚I𝜒 ∶ X → [0, 1] and 𝜚F𝜒 ∶ X → [0, 1] denote
the TD, ID and FD of 𝜚 ∈ X to 𝜒 , respectively and 0 ≤ 𝜚T𝜒 (𝜚) + 𝜚I𝜒 (𝜚) + 𝜚F𝜒 (𝜚) ≤ 2. For 𝜒 =

⟨

𝜚T𝜒 , 𝜚
I
𝜒 , 𝜚

F
𝜒
⟩

is called a neutrosophic fuzzy number (NSFN).

Definition 8 (Biswas, 2006). (i) A VS 𝜒1 in X is a pair (T𝜒1 ,F𝜒1 ), T𝜒1 ,F𝜒1 ∶ X → [0, 1] are mappings and T𝜒1 (𝜚) + F𝜒1 (𝜚) ≤ 1, for all 𝜚 ∈ X, T𝜒1 and
F𝜒1 are called TD and FD, respectively. (ii) 𝜒1(𝜚) = [T𝜒1 (𝜚), 1 − F𝜒1 (𝜚)] is called the vague value of 𝜚 in 𝜒1.

Definition 9 (Biswas, 2006). (i) The two VSs are 𝜒1 and 𝜒2. Then 𝜒1 ⊆ 𝜒2 if and only if 𝜒1(𝜚) ≤ 𝜒1𝜒2 (𝜚). That is, T𝜒1 (𝜚) ≤ T𝜒2 (𝜚) and
1 − F𝜒1 (𝜚) ≤ 1 − F𝜒2 (𝜚), for all 𝜚 ∈ X.

(ii) The union of two VSs 𝜒1 and 𝜒2, as 𝑋 = 𝜒1 ∪ 𝜒2, T𝑋 = 𝑚𝑎𝑥{T𝜒1 ,T𝜒2} and 1 − F𝑋 = 𝑚𝑎𝑥{1 − F𝜒1 , 1 − F𝜒2} = 1 − 𝑚𝑖𝑛{F𝜒1 ,F𝜒2}.
(iii) The intersection of two VSs 𝜒1 and 𝜒2 as 𝑋 = 𝜒1 ∩ 𝜒2, T𝑋 = 𝑚𝑖𝑛{T𝜒1 ,T𝜒2} and 1 − F𝑋 = 𝑚𝑖𝑛{1 − F𝜒1 , 1 − F𝜒2} = 1 − 𝑚𝑎𝑥{F𝜒1 ,F𝜒2}.

Definition 10 (Biswas, 2006). A VS 𝜒1 of X, for all 𝜚 ∈ X. Then
(i) T𝜒1 (𝜚) = 0 and F𝜒1 (𝜚) = 1 is called zero VS of X.
(ii) T𝜒1 (𝜚) = 1 and F𝜒1 (𝜚) = 0 is called unit VS of X.

3. Basic operations

In this section, some new logarithmic square root operations are introduced for square root neutrosophic vague numbers (LSRNSVNs) and some
aggregate operators are defined. Based on these basis characteristics, we can further explore linguistic developments, fuzzy numbers, and distance
measures. An important fundamental operation of the LSRNSVN is defined.

Definition 11. The LSRNSVS ⃖⃖⃗𝜒 in X is ⃖⃖⃗𝜒 =
{

𝜚,
⟨[

inf 𝛥T
𝜒 , sup(1 − 𝛥F

𝜒 )
]

,
[

inf 𝛥I
𝜒 , sup𝛥

I
𝜒

]

,
[

inf 𝛥F
𝜒 , sup(1 − 𝛥T

𝜒 )
]⟩

|

|

|

𝜚 ∈ X
}

, where ⃖⃖⃖⃖⃗𝛥𝑇
𝜒 ∶ X → 𝐼𝑛𝑡([0, 1]),

⃖⃖⃖⃖⃗𝛥𝐼
𝜒 ∶ X → 𝐼𝑛𝑡([0, 1]) and ⃖⃖⃖⃖⃗𝛥𝐹

𝜒 ∶ X → 𝐼𝑁𝑇 ([0, 1]) are denotes the TD, ID and FD of 𝜚 ∈ X to ⃖⃖⃗𝜒 , respectively, it is observe that 0 ⪯ (log𝛶 sup(1−𝛥F
𝜒 )(𝜚))

2+
√

log𝛶 sup𝛥I
𝜒 (𝜚)+

√

log𝛶 sup(1 − 𝛥T
𝜒 )(𝜚) ⪯ 2, where 𝛶 =

∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

. For ⃖⃖⃗𝜒 =
⟨[

inf 𝛥T
𝜒 , sup(1−𝛥F

𝜒 )
]

,
[

inf 𝛥I
𝜒 , sup𝛥

I
𝜒

]

,
[

inf 𝛥F
𝜒 , sup(1−𝛥T

𝜒 )
]⟩

is called
a logarithmic square root neutrosophic vague number (LSRNSVN).

Definition 12. For any LSRNSVN ⃖⃖⃗𝜒 =
⟨[

inf 𝛥T
𝜒 , sup(1 − 𝛥F

𝜒 )
]

,
[

inf 𝛥I
𝜒 , sup𝛥

I
𝜒

]

,
[

inf 𝛥F
𝜒 , sup(1 − 𝛥T

𝜒 )
]⟩

, the score function of ⃖⃖⃗𝜒 is 𝑆(⃖⃖⃗𝜒) =
𝜏
2

(

𝑋
2 − 𝑌

2 + 1 − 𝑍
2

)

, where 𝑋 = (log𝛶 inf 𝛥T)2 + (log𝛶 sup(1 − 𝛥F))2, 𝑌 =
√

log𝛶 inf 𝛥I +
√

log𝛶 sup𝛥I, 𝑍 =
√

log𝛶 inf 𝛥F +
√

log𝛶 sup(1 − 𝛥T) and

𝑆(⃖⃖⃗𝜒) ∈ [−1, 1], where 𝛶 =
∏

(

𝛥T , 𝛥I , 𝛥F
)

.
𝜒 𝜒 𝜒
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Definition 13. Let ⃖⃖⃗𝜒 =
⟨

[inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I, sup𝛥I], [inf 𝛥F, sup(1 − 𝛥T)]
⟩

is a square root neutrosophic vague number (LSRNSVN). The TD,

ID and FD are defined as
[

inf 𝛥T, sup(1 − 𝛥F)
]

=
[

log𝛶 inf 𝛥T, log𝛶 sup(1 − 𝛥F)
]

,
[

inf 𝛥I, sup𝛥I] =
[

log𝛶 inf 𝛥I, log𝛶 sup𝛥I
]

and
[

inf 𝛥F, sup(1 − 𝛥T)
]

=
[

1−
(

1−log𝛶 inf 𝛥F), 1−
(

1−log𝛶 sup(1−𝛥T)
)

]

, 𝜚 ∈ 𝑋 respectively, where 𝑋 is a non-empty set and
[

inf 𝛥T, sup(1−𝛥F)
]

,
[

inf 𝛥I, sup𝛥I],
[

inf 𝛥F, sup(1−

𝛥T)
]

∈ ([0, 1]) and 0 ⪯
(

log𝛶 sup(1 − 𝛥F)(𝜚)
)2 +

√

log𝛶 sup𝛥I(𝜚) +
√

log𝛶 sup(1 − 𝛥T)(𝜚) ⪯ 2, where 𝛶 =
∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

.

Definition 14. Let ⃖⃖⃗𝜒 =
⟨

[inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I, sup𝛥I], [inf 𝛥F, sup(1 − 𝛥T)]
⟩

, ⃖⃖⃗𝜒1 = ⟨[inf 𝛥T
1 , sup(1 − 𝛥F

1 )], [inf 𝛥
I
1, sup𝛥

I
1], [inf 𝛥

F
1 , sup(1 − 𝛥T

1 )]⟩ and

⃖⃖⃗𝜒2 =
⟨

[inf 𝛥T
2 , sup(1 − 𝛥F

2 )], [inf 𝛥
I
2, sup𝛥

I
2], [inf 𝛥

F
2 , sup(1 − 𝛥T

2 )]
⟩

be the any three LSRNSVNs, and 𝛤 ≻ 0 and 𝛶 =
∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

. Then,

1. ⃖⃖⃗𝜒1
⋀

⃖⃖⃗𝜒2 =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎣

(

2𝛤
√

log𝛶𝑖 inf 𝛥
T
1 + 2𝛤

√

log𝛶𝑖 inf 𝛥
T
2 − 2𝛤

√

log𝛶𝑖 inf 𝛥
T
1 ⋅ 2𝛤

√

log𝛶𝑖 inf 𝛥
T
2

)2𝛤
,

(

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥F
1 ) +

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥F
2 ) −

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥F
1 ) ⋅

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥F
2 )
)2𝛤

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

(

𝛤
√

log𝛶𝑖 inf 𝛥
I
1 +

𝛤
√

log𝛶𝑖 inf 𝛥
I
2 −

𝛤
√

log𝛶𝑖 inf 𝛥
I
1 ⋅

𝛤
√

log𝛶𝑖 inf 𝛥
I
2

)𝛤
,

(

𝛤
√

log𝛶𝑖 sup𝛥
I
1 +

𝛤
√

log𝛶𝑖 sup𝛥
I
2 −

𝛤
√

log𝛶𝑖 sup𝛥
I
1 ⋅

𝛤
√

log𝛶𝑖 sup𝛥
I
2

)𝛤

⎤

⎥

⎥

⎥

⎥

⎦

,

[

log𝛶𝑖 inf 𝛥
F
1 ⋅ log𝛶𝑖 inf 𝛥

F
2 , log𝛶𝑖 sup(1 − 𝛥T

1 ) ⋅ log𝛶𝑖 sup(1 − 𝛥T
2 )
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

2. ⃖⃖⃗𝜒1
⋁

⃖⃖⃗𝜒2 =
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

log𝛶𝑖 inf 𝛥
T
1 ⋅ log𝛶𝑖 inf 𝛥

T
2 , log𝛶𝑖 sup(1 − 𝛥F

1 ) ⋅ log𝛶𝑖 sup(1 − 𝛥F
2 )
]

,
⎡

⎢

⎢

⎢

⎢

⎣

(

𝛤
√

log𝛶𝑖 inf 𝛥
I
1 +

𝛤
√

log𝛶𝑖 inf 𝛥
I
2 −

𝛤
√

log𝛶𝑖 inf 𝛥
I
1 ⋅

𝛤
√

log𝛶𝑖 inf 𝛥
I
2

)𝛤
,

(

𝛤
√

log𝛶𝑖 sup𝛥
I
1 +

𝛤
√

log𝛶𝑖 sup𝛥
I
2 −

𝛤
√

log𝛶𝑖 sup𝛥
I
1 ⋅

𝛤
√

log𝛶𝑖 sup𝛥
I
2

)𝛤

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

(

2𝛤
√

log𝛶𝑖 inf 𝛥
F
1 + 2𝛤

√

log𝛶𝑖 inf 𝛥
F
2 − 2𝛤

√

log𝛶𝑖 inf 𝛥
F
1 ⋅ 2𝛤

√

log𝛶𝑖 inf 𝛥
F
2

)2𝛤
,

(

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥T
1 ) +

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥T
2 ) −

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥T
1 ) ⋅

2𝛤
√

log𝛶𝑖 sup(1 − 𝛥T
2 )
)2𝛤

⎤

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

3. 𝛤 ⋅ ⃖⃖⃗𝜒 =

⎡

⎢

⎢

⎢

⎣

[

(

1 −
(

1 − 2𝛤
√

log𝛶𝑖 inf 𝛥
T
)𝛤

)2𝛤
,
(

1 −
(

1 − 2𝛤
√

log𝛶𝑖 sup(1 − 𝛥F)
)𝛤

)2𝛤 ]

,
[

𝛤
√

log𝛶𝑖 inf 𝛥
I
1,

𝛤
√

log𝛶𝑖 sup𝛥
I
1

]

,
[

(log𝛶𝑖 inf 𝛥
F)𝛤 , (log𝛶𝑖 sup(1 − 𝛥T))𝛤

]

⎤

⎥

⎥

⎥

⎦

,

4. ⃖⃖⃗𝜒𝛤 =

⎡

⎢

⎢

⎢

⎣

[

(log𝛶𝑖 inf 𝛥
T)𝛤 , (log𝛶𝑖 sup(1 − 𝛥F))𝛤

]

,
[

𝛤
√

log𝛶𝑖 inf 𝛥
I
1,

𝛤
√

log𝛶𝑖 sup𝛥
I
1

]

,
[

(

1 −
(

1 − 2𝛤
√

log𝛶𝑖 inf 𝛥
F
)𝛤

)2𝛤
,
(

1 −
(

1 − 2𝛤
√

log𝛶𝑖 sup(1 − 𝛥T)
)𝛤

)2𝛤 ]

⎤

⎥

⎥

⎥

⎦

.

4. Different distance for LSRNSVN

ED and HD are used to calculate the differences between two elements, two sets, etc. For example, they can calculate the distance between FSs,
IVFSs, IFSs, interval-valued IFSs, and VSs. A few mathematical properties of the LSRNSVNs were introduced, as well as the ED and HD measures.

Definition 15. For any two LSRNSVNs ⃖⃖⃗𝜒1 = ⟨[inf 𝛥T
1 , sup(1−𝛥F

1 )], [inf 𝛥
I
1, sup𝛥

I
1], [inf 𝛥

F
1 , sup(1−𝛥T

1 )]⟩ and ⃖⃖⃗𝜒2 =
⟨

[inf 𝛥T
2 , sup(1−𝛥F

2 )], [inf 𝛥
I
2, sup𝛥

I
2],

[inf 𝛥F
2 , sup(1 − 𝛥T

2 )]
⟩

. Then

D𝐸

(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2

)

= 1
2

√

√

√

√

√

√

√

[

2+𝑋1−𝑌1−𝑍1
4 − 2+𝑋2−𝑌2−𝑍2

4

]2

+1
2

[

2+𝑋1−𝑌1−𝑍1
4 − 2+𝑋2−𝑌2−𝑍2

4

]2

and

D𝐻

(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2

)

= 1
2

⎡

⎢

⎢

⎣

|

|

|

2+𝑋1−𝑌1−𝑍1
4 − 2+𝑋2−𝑌2−𝑍2

4
|

|

|

+ 1
2
|

|

|

2+𝑋1−𝑌1−𝑍1
4 − 2+𝑋2−𝑌2−𝑍2

4
|

|

|

⎤

⎥

⎥

⎦

where 𝛶 =
∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

and 𝑋1 = (log𝛶𝑖 inf 𝛥
T
1 )

2 + (log𝛶𝑖 sup(1 − 𝛥F
1 ))

2, 𝑌1 =
√

log𝛶𝑖 inf 𝛥
I
1 +

√

log𝛶𝑖 sup𝛥
I
1, 𝑍1 =

√

log𝛶𝑖 inf 𝛥
F
1 +

√

log𝛶𝑖 sup(1 − 𝛥T
1 ),

2 = (log𝛶𝑖 inf 𝛥
T
2 )

2 + (log𝛶𝑖 sup(1 − 𝛥F
2 ))

2, 𝑌2 =
√

log𝛶𝑖 inf 𝛥
I
2 +

√

log𝛶𝑖 sup𝛥
I
2 and 𝑍2 =

√

log𝛶𝑖 inf 𝛥
F
2 +

√

log𝛶𝑖 sup(1 − 𝛥T
2 ).

Since D𝐸

(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2

)

and D𝐸

(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2

)

are represents the ED and HD between ⃖⃖⃗𝜒1 and ⃖⃖⃗𝜒2, respectively.

Theorem 1. If any three LSRNSVNs ⃖⃖⃗𝜒1 = ⟨[inf 𝛥T
1 , sup(1 − 𝛥F

1 )], [inf 𝛥
I
1, sup𝛥

I
1], [inf 𝛥

F
1 , sup(1 − 𝛥T

1 )]⟩, ⃖⃖⃗𝜒2 =
⟨

[inf 𝛥T
2 , sup(1 − 𝛥F

2 )], [inf 𝛥
I
2, sup𝛥

I
2],

[inf 𝛥F, sup(1 − 𝛥T)]
⟩

, 𝜒 =
⟨

[inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I , sup𝛥I ], [inf 𝛥F, sup(1 − 𝛥T)]
⟩

, then D (𝜒 , 𝜒 ) satisfies the following properties are holds.
2 2 ⃖⃖⃖⃗3 3 3 3 3 3 3 𝐸 1 2
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1. D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) is zero iff ⃖⃖⃗𝜒1 = ⃖⃖⃗𝜒2.
2. D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) and D𝐸 (⃖⃖⃗𝜒2, ⃖⃖⃗𝜒1) are co-occur.
3. D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃖⃗𝜒3) ⪯ D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) + D𝐸 (⃖⃖⃗𝜒2, ⃖⃖⃖⃗𝜒3).

Proof. The proof of Theorem 1 provided in appendix. □

Corollary 2. If any three LSRNSVNs ⃖⃖⃗𝜒1 = ⟨[inf 𝛥T
1 , sup(1 − 𝛥F

1 )], [inf 𝛥
I
1, sup𝛥

I
1], [inf 𝛥

F
1 , sup(1 − 𝛥T

1 )]⟩, ⃖⃖⃗𝜒2 =
⟨

[inf 𝛥T
2 , sup(1 − 𝛥F

2 )], [inf 𝛥
I
2, sup𝛥

I
2],

[inf 𝛥F
2 , sup(1 − 𝛥T

2 )]
⟩

, ⃖⃖⃖⃗𝜒3 =
⟨

[inf 𝛥T
3 , sup(1 − 𝛥F

3 )], [inf 𝛥
I
3, sup𝛥

I
3], [inf 𝛥

F
3 , sup(1 − 𝛥T

3 )]
⟩

, then D𝐻 (𝜒1, 𝜒2) satisfies the following conditions.

1. D𝐻 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) is zero iff ⃖⃖⃗𝜒1 = ⃖⃖⃗𝜒2.
2. D𝐻 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) = D𝐻 (⃖⃖⃗𝜒2, ⃖⃖⃗𝜒1).
3. D𝐻 (⃖⃖⃗𝜒1, ⃖⃖⃖⃗𝜒3) ⪯ D𝐻 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) + D𝐻 (⃖⃖⃗𝜒2, ⃖⃖⃖⃗𝜒3).

5. Types of aggregation operators

This section examines the advantages of aggregating square root vague sets using logarithmic AOs. Using the square root vague set with the
logarithmic toolset provides a broader modeling methodology for complex phenomena. Adding these operators to the averaging and geometric
operators gives the decision-maker a more comprehensive range of interpretation possibilities. A brief description of some of the families of
logarithmic square root neutrosophic vague weighted averaging (LSRNSVWA), logarithmic square root neutrosophic vague weighted geometric
(LSRNSVWG), logarithmic square root generalized neutrosophic vague weighted averaging (LSRGNSVWA), logarithmic square root generalized
neutrosophic vague weighted geometric (LSRGNSVWG) operators are provided in this section. The main properties of the logarithmic square root
AO are commutativity, idempotency, boundedness, associativity and monotonicity.

5.1. LSRNSVWA operator

Definition 16. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs, 𝑊 = (𝜉1, 𝜉2,… , 𝜉𝑛) be the weight of ⃖⃖⃗𝜒 𝑖, 𝜉𝑖 ⪰ 0

and
𝑛
⋀

𝑖=1
𝜉𝑖 = 1. Then LSRNSVWA (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =

𝑛
⋀

𝑖=1
𝜉𝑖 ⃖⃖⃗𝜒 𝑖.

Theorem 3. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖
)2𝛤]

,
[(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,

[

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖 )

𝜉𝑖 ,
𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))
𝜉𝑖
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. The proof of Theorem 3 provided in appendix. □

Theorem 4. If all ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ][inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

(𝑖 = 1, 2,… , 𝑛) are equal, then LSRNSVWA(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =
⃖⃖⃗𝜒(idempotency property).

Proof. The proof of Theorem 4 provided in appendix. □

Theorem 5. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖𝑗 , sup(1 − 𝛥F

𝑖𝑗 )], [inf 𝛥
I
𝑖𝑗 , sup𝛥

I
𝑖𝑗 ][inf 𝛥

F
𝑖𝑗 , sup(1 − 𝛥T

𝑖𝑗 )]
⟩

(𝑖 = 1, 2,… , 𝑛); (𝑗 = 1, 2,… , 𝑖𝑗 ) be the LSRNSVWA, where

log𝛶𝑖 inf 𝛥
T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

T
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

T = sup log𝛶𝑖 inf 𝛥
T
𝑖𝑗 , log𝛶𝑖 sup(1 − 𝛥F)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= inf log𝛶𝑖 sup(1 − 𝛥F

𝑖𝑗 ),
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥F) = sup log𝛶𝑖 sup(1 − 𝛥F

𝑖𝑗 ),

log𝛶𝑖 inf 𝛥
I

⏟⏞⏞⏞⏟⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

I
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

I = sup log𝛶𝑖 inf 𝛥
I
𝑖𝑗 , log𝛶𝑖 sup𝛥

I

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 sup𝛥

I
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup𝛥

I = sup log𝛶𝑖 sup𝛥
I
𝑖𝑗 , log𝛶𝑖 inf 𝛥

F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

F
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F = sup log𝛶𝑖 inf 𝛥
F
𝑖𝑗 , log𝛶𝑖 sup(1 − 𝛥T)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= inf log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ),
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T) = sup log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ).

Then,
⟨

[log𝛶𝑖 inf 𝛥
T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
, log𝛶𝑖 sup(1 − 𝛥F)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

], [log𝛶𝑖 inf 𝛥
I

⏟⏞⏞⏞⏟⏞⏞⏞⏟
, log𝛶𝑖 sup𝛥

I

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
], [

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F,
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T)]

⟩

⪯ 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) ⪯ ⟨[
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

T,
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥F)], [

⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

I,
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup𝛥

I], [log𝛶𝑖 inf 𝛥
F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
, log𝛶𝑖 sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

]⟩, where 1 ⪯ 𝑖 ⪯ 𝑛, 𝑗 =

1, 2,… , 𝑖𝑗 (boundedness property).

Proof. The proof of Theorem 5 provided in appendix. □
6 
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Theorem 6. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑡𝑖𝑗
, sup(1−𝛥F

𝑡𝑖𝑗
)], [inf 𝛥I

𝑡𝑖𝑗
, sup𝛥I

𝑡𝑖𝑗
], [inf 𝛥F

𝑡𝑖𝑗
, sup(1−𝛥T

𝑡𝑖𝑗
)]
⟩

and ⃖⃖⃖⃖⃗𝑊 𝑖 =
⟨

[inf 𝛥T
ℎ𝑖𝑗

, sup(1−𝛥F
ℎ𝑖𝑗

)], [inf 𝛥I
ℎ𝑖𝑗

, sup𝛥I
ℎ𝑖𝑗

], [inf 𝛥F
ℎ𝑖𝑗

, sup(1−

𝛥T
ℎ𝑖𝑗

)]
⟩

be the LSRNSVWAs. For any 𝑖, if there is
√

(

log𝛶𝑖 inf 𝛥
T
𝑡𝑖𝑗

)

+
√

(

log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖𝑗
)
)

⪯
√

(

log𝛶𝑖 inf 𝛥
T
ℎ𝑖𝑗

)

+
√

(

log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖𝑗

)
)

and
(

log𝛶𝑖 inf 𝛥
I
𝑡𝑖𝑗

)

+
√

(

log𝛶𝑖 sup𝛥
I
𝑡𝑖𝑗

)

⪯
√

(

log𝛶𝑖 inf 𝛥
I
ℎ𝑖𝑗

)

+
√

(

log𝛶𝑖 sup𝛥
I
ℎ𝑖𝑗

)

and
(

log𝛶𝑖 inf 𝛥
F
𝑡𝑖𝑗

)

+
(

log𝛶𝑖 sup(1 − 𝛥T
𝑡𝑖𝑗
)
)

⪰
(

log𝛶𝑖 inf 𝛥
F
ℎ𝑖𝑗

)

+

log𝛶𝑖 sup(1 − 𝛥T
ℎ𝑖𝑗

)
)

or ⃖⃖⃗𝜒 𝑖 ⪯ ⃖⃖⃖⃖⃗𝑊 𝑖, then 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴
(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛
)

⪯ 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴
(

⃖⃖⃖⃖⃗𝑊 1, ⃖⃖⃖⃖⃗𝑊 2,… , ⃖⃖⃖⃖⃗𝑊 𝑛

)

, where (𝑖 = 1, 2,… , 𝑛); (𝑗 = 1, 2,… , 𝑖𝑗 )
monotonicity property).

roof. The proof of Theorem 6 provided in appendix. □

.2. LSRNSVWG operator

In this subsection, we have studied LSRNSVWG operator and its properties.

efinition 17. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then LSRNSVWG (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =
𝑛
⋁

𝑖=1
⃖⃖⃗𝜒𝜉𝑖
𝑖 .

Theorem 7. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

T
𝑖 )

𝜉𝑖 ,
𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥F

𝑖 ))
𝜉𝑖
]

,
[(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,
[(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝜉𝑖
)2𝛤]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. Theorem 3 leads to the proof.

Theorem 8. If all ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ][inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

(𝑖 = 1, 2,… , 𝑛) are equal, then LSRNSVWG(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) = ⃖⃖⃗𝜒 .

Proof. Theorem 4 leads to the proof.

Remark 1. Boundedness and monotonicity are guaranteed by the LSRNSVWG operator.

Proof. Theorems 5 and 6 leads to the proof.

5.3. LSRGNSVWA operator

Definition 18. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVN. Then LSRGNSVWA (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =
(

𝑛
⋀

𝑖=1
𝜉𝑖 ⃖⃖⃗𝜒

𝛤
𝑖

)1∕𝛤
.

heorem 9. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then LSRGNSVWA (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)

)𝜉𝑖
)2𝛤

⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))𝛤

)

)𝜉𝑖
)2𝛤

⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )𝛤

)

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −

(

1 − 2𝛤

√

√

√

√

√

𝑛
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )
)𝛤

)2𝛤
)𝜉𝑖

)𝛤
⎞

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎝

1 −

(

1 − 2𝛤

√

√

√

√

√

𝑛
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

2𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. The proof of Theorem 9 provided in appendix. □

Remark 2. The LSRGNSVWA operator becomes the LSRNSVWA operator if 𝛤 = 1.

Theorem 10. If all 𝜒 =
⟨

[inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I, sup𝛥I][inf 𝛥F, sup(1 − 𝛥T)]
⟩

(𝑖 = 1, 2,… , 𝑛) are equal, then LSRGNSVWA(𝜒 , 𝜒 ,… , 𝜒 ) = 𝜒 .
⃖⃖⃗ 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 ⃖⃖⃗ 1 ⃖⃖⃗ 2 ⃖⃖⃗ 𝑛 ⃖⃖⃗
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Fig. 1. Graphical representation of the algorithm.

Proof. Theorem 4 leads to the proof.

Remark 3. Boundedness and monotonicity properties of LSRGNSVWA operator are satisfied.

Proof. Theorems 5 and 6 leads to the proof.

5.4. LSRGNSVWG operator

Definition 19. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then LSRGNSVWG (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛) =

1
𝛤

(

𝑛
⋁

𝑖=1
(𝛤 ⃖⃖⃗𝜒 𝑖)𝜉𝑖

)

(𝑖 = 1, 2,… , 𝑛).

Theorem 11. Let ⃖⃖⃗𝜒 𝑖 =
⟨

[inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )], [inf 𝛥
I
𝑖 , sup𝛥

I
𝑖 ], [inf 𝛥

F
𝑖 , sup(1 − 𝛥T

𝑖 )]
⟩

be the LSRNSVNs. Then LSRGNSVWG(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛)=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −

(

1 − 2𝛤

√

√

√

√

√

𝑛
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝛤

)2𝛤
)𝜉𝑖

)𝛤
⎞

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎝

1 −

(

1 − 2𝛤

√

√

√

√

√

𝑛
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

2𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )𝛤

)

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)

)𝜉𝑖
)𝛤

⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )𝛤

)

)𝜉𝑖
)2𝛤

⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

(

1 −
𝑛
⋁

𝑖=1

(

1 −
(

2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))𝛤

)

)𝜉𝑖
)2𝛤

⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Proof. Theorem 9 leads to the proof.

Remark 4. The LSRGNSVWG operator becomes the LSRNSVWG operator if 𝛤 = 1.

Remark 5. It provides boundedness and monotonicity properties, based on the LSRGNSVWG operator.

Proof. Theorems 5 and 6 leads to the proof.

Theorem 12. If all 𝜒 =
⟨

[inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I, sup𝛥I][inf 𝛥F, sup(1 − 𝛥T)]
⟩

(𝑖 = 1, 2,… , 𝑛) are equal, then LSRGNSVWG(𝜒 , 𝜒 ,… , 𝜒 ) = 𝜒 .
⃖⃖⃗ 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 𝑖 ⃖⃖⃗ 1 ⃖⃖⃗ 2 ⃖⃖⃗ 𝑛 ⃖⃖⃗
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6. MADM using to LSRNSV

Let ⃖⃖⃗𝜒 = {⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛} be the 𝑛-alternatives, 𝐶 = {𝐶1, 𝐶2,… , 𝐶𝑚} be the 𝑚-attributes, 𝑤 = {𝜉1, 𝜉2,… , 𝜉𝑚} be the weights of attributes,
⃖⃖⃗𝜒 𝑖𝑗 =

⟨

[inf 𝛥T
𝑖𝑗 , sup(1 − 𝛥F

𝑖𝑗 )], [inf 𝛥
I
𝑖𝑗 , sup𝛥

I
𝑖𝑗 ][inf 𝛥

F
𝑖𝑗 , sup(1 − 𝛥T

𝑖𝑗 )]
⟩

is denote LSRNSVN of alternative ⃖⃖⃗𝜒 𝑖 in attribute 𝐶𝑗 .

Since
[

inf 𝛥T
𝑖𝑗 , sup(1−𝛥

F
𝑖𝑗 )
]

,
[

inf 𝛥I
𝑖𝑗 , sup𝛥

I
𝑖𝑗

]

,
[

inf 𝛥F
𝑖𝑗 , sup(1−𝛥

T
𝑖𝑗 )
]

∈ [0, 1] and 0 ⪯ (log𝛶𝑖 sup(1−𝛥
F
𝑖𝑗 )(𝜚))

2+
√

(log𝛶𝑖 sup𝛥
I
𝑖𝑗 (𝜚))+

√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖𝑗 )(𝜚)) ⪯

, where 𝛶 =
∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

. Here, 𝑛-alternative sets and 𝑚-attribute sets result in a decision matrix 𝑛 × 𝑚 that is indicated by the mathematical
xpression D = (⃖⃖⃗𝜒 𝑖𝑗 )𝑛×𝑚. Fig. 1 shows a flowchat of the algorithm for the MADM process using LSRNSV.

.1. Algorithm

The following are the steps mentioned for solving the MADM problems.

tep-1: Form the LSRNSV choice data.

tep-2: Ascertain the decision values for normalization. Decision matrix D = (⃖⃖⃗𝜒 𝑖𝑗 )𝑛×𝑚 is normalized into ⃖⃖⃗D = (⃖⃖⃗𝜒 𝑖𝑗 )𝑛×𝑚; put

⃖⃖⃗𝜒 𝑖𝑗 =
⟨

[⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 inf 𝛥
T
𝑖𝑗 ,

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 )], [

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 inf 𝛥
I
𝑖𝑗 ,

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 sup𝛥
I
𝑖𝑗 ], [

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 inf 𝛥
F
𝑖𝑗 ,

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 sup(1 − 𝛥T
𝑖𝑗 )]

⟩

nd ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 inf 𝛥
T
𝑖𝑗 = log𝛶𝑖 inf 𝛥

T
𝑖𝑗 ,

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 ) = log𝛶𝑖 sup(1 − 𝛥F

𝑖𝑗 ), where 𝛶 =
∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

.

tep-3: Calculate the both ideal values for each alternative as

⃖⃖⃗𝜒𝑃 =

⟨

[1, 1], [1, 1], [0, 0]

⟩

⃖⃖⃗𝜒𝑁 =

⟨

[0, 0], [0, 0], [1, 1]

⟩

.

tep-4: Based on the two ideal values, calculate the ED between each option:

D𝑃
𝑖 = D𝐸

(

⃖⃖⃗𝜒 𝑖, ⃖⃖⃗𝜒
𝑃
)

; D𝑁
𝑖 = D𝐸

(

⃖⃖⃗𝜒 𝑖, ⃖⃖⃗𝜒
𝑁
)

.

tep-5: Relative closeness are calculated as D⋆
𝑖 =

D𝑁
𝑖

D𝑃
𝑖 +D

𝑁
𝑖

.

tep-6: The output is supD⋆
𝑖 . So, choosing the optimal action to take for a particular problem is a decision.

.2. Artificial intelligence selection

Robots including service robots are becoming increasingly prevalent in society. The robots of the future will be able to manipulate objects
n our daily lives with reliability, but only if they are paired with artificial intelligence techniques for planning and DM, which will allow them
o comprehend how they can accomplish a particular task. AI systems are software (and perhaps also hardware) systems designed by humans
o perform complex tasks by acquiring data about their environment in a physical or digital dimension in response to a complex goal. An AI
ystem interprets the collected structured and unstructured data, interprets the knowledge, or processes the information derived from this data,
nd determines what action(s) to take in order to accomplish the given task. By analyzing how their decisions affect the environment, AI systems
an adapt their behavior, using symbolic rules or learning numeric models. AI can be used in computer systems, which can use the knowledge it has
earned to process new inputs. It is a mathematical and algorithmic skill that can only be applied to tasks that have been trained by the system. To
etter understand the concept of AI, picture a chatbot, whose job is to help dinners make reservations at restaurants. Developed to answer inquiries
egarding table reservations, this chatbot is a computer program. By doing this, it determines how the subject is talking in general. When the chatbot
as been trained, it is capable of conversing with users. As a result, the chatbot cannot assist a customer if they ask about food recommendations
hen they depart from the intended topic of reserving a table. Some of the existing autonomous robots can be possibly implemented in shipment
elivery. Further improvements and modes of artificially intelligent last-mile delivery robots are described in the following text as considered
lternatives. We offer a classification to help you decide how AI can be applied practically. Each type of AI will be briefly described, along with
he most important business use cases and examples. Currently, we have selected five types of artificial intelligence robotics at random such as
nalytic AI ⃖⃖⃗𝜒1, Functional AI ⃖⃖⃗𝜒2, Visual AI ⃖⃖⃗𝜒3, Interactive AI ⃖⃖⃗𝜒4 and Text AI ⃖⃖⃗𝜒5.

1. Analytic AI ⃖⃖⃗𝜒1: Using analytic AI, data analysis can be automated, which reduces time and labor costs. AI is increasingly capable of analyzing
unstructured data sources, such as unstructured speech, images, and videos, via analytic AI tools such as NLP. AI systems have multiple
advantages when it comes to analyzing data autonomously. There are many reasons for this, but the most important one is to reduce the
labor cost of highly paid and highly available analytic AI professionals. Additionally, analytic AI can be used in the following ways: (i) Risk
management can be improved with analytic AI, which can lead to smarter strategies and increased effectiveness. (ii) Innovative products to
create new products and improve existing ones, analytic AI can analyze big data. (iii) Turbocharged supply chain is data-driven knowledge
can be tapped into to solve previously unsolvable problems through analytic AI. (iv) Customer engagement is a analytic AI can be used
to identify what customers want and acquire, retain and cultivate them. (v) Successful marketing campaigns is analyzing current customer
purchases. The analytic AI can be used to targeted and focused campaigns.

2. Functional AI ⃖⃖⃗𝜒2: Functional AI works in a similar manner to analytic AI in that it scans large amounts of data in order to search for patterns
and dependencies between the data that it scans. Rather than giving recommendations, functional AI is designed to take action, it is not
intended to make recommendations. Using its connectivity to the IoT cloud, the system is able to detect the patterns of breakdowns in a
certain machine by using sensor data from the machine in question and turn the system off automatically as soon as it detects a breakdown.
Secondly, we can take a look at the robots that are being used by Amazon to move shelves that contain goods to pickers, thereby speeding
up the picking process.
9 
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Table 1
DM values.

C1 C2 C3 C4

⃖⃖⃗𝜒1
⟨

[0.5, 0.55],
⟨

[0.5, 0.65],
⟨

[0.6, 0.65],
⟨

[0.65, 0.8],
[0.4, 0.45], [0.45, 0.5]

⟩

[0.3, 0.45], [0.35, 0.5]
⟩

[0.4, 0.45], [0.35, 0.4]
⟩

[0.25, 0.5], [0.2, 0.35]
⟩

⃖⃖⃗𝜒2
⟨

[0.4, 0.5],
⟨

[0.7, 0.78],
⟨

[0.5, 0.68],
⟨

[0.75, 0.85],
[0.6, 0.64], [0.5, 0.6]

⟩

[0.65, 0.7], [0.22, 0.3]
⟩

[0.4, 0.5], [0.32, 0.5]
⟩

[0.45, 0.55], [0.15, 0.25]
⟩

⃖⃖⃗𝜒3
⟨

[0.2, 0.21],
⟨

[0.69, 0.75],
⟨

[0.45, 0.55],
⟨

[0.85, 0.9],
[0.7, 0.75], [0.79, 0.8]

⟩

[0.5, 0.55], [0.25, 0.31]
⟩

[0.5, 0.55], [0.45, 0.55]
⟩

[0.35, 0.45], [0.1, 0.15]
⟩

⃖⃖⃗𝜒4
⟨

[0.45, 0.49],
⟨

[0.85, 0.97],
⟨

[0.65, 0.8],
⟨

[0.8, 0.9],
[0.2, 0.27], [0.51, 0.55]

⟩

[0.5, 0.55], [0.03, 0.15]
⟩

[0.35, 0.4], [0.2, 0.35]
⟩

[0.4, 0.5], [0.1, 0.2]
⟩

⃖⃖⃗𝜒5
⟨

[0.4, 0.42],
⟨

[0.7, 0.8],
⟨

[0.45, 0.75],
⟨

[0.7, 0.8],
[0.5, 0.55], [0.58, 0.6]

⟩

[0.45, 0.55], [0.2, 0.3]
⟩

[0.3, 0.45], [0.25, 0.55]
⟩

[0.5, 0.55], [0.2, 0.3]
⟩

Table 2
𝛶 values.
[0.0975, 0.1859] [0.0120, 0.0456] [0.0110, 0.0350]
[0.1050, 0.2254] [0.0702, 0.1232] [0.0053, 0.0225]
[0.0528, 0.0780] [0.0613, 0.1021] [0.0089, 0.0205]
[0.1989, 0.3422] [0.0140, 0.0297] [0.0003, 0.0058]
[0.0882, 0.2016] [0.0338, 0.0749] [0.0058, 0.0297]

Table 3
LSRNSVWA values.

𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝛤 = 1)

⃖⃖⃗𝜒1
⟨

[0.2652, 0.2723], [0.2438, 0.2535], [0.2256, 0.2327]
⟩

⃖⃖⃗𝜒2
⟨

[0.2712, 0.2838], [0.2336, 0.2372], [0.2147, 0.215]
⟩

⃖⃖⃗𝜒3
⟨

[0.2983, 0.3143], [0.2299, 0.2318], [0.1526, 0.1584]
⟩

⃖⃖⃗𝜒4
⟨

[0.2807, 0.3158], [0.2677, 0.2682], [0.1954, 0.213]
⟩

⃖⃖⃗𝜒5
⟨

[0.2641, 0.2966], [0.2463, 0.2468], [0.2076, 0.2205]
⟩

3. Interactive AI ⃖⃖⃗𝜒3: Businesses can automate communication using this type of AI while still maintaining a high level of interaction. A chatbots
or smart personal assistants are common example of this type of AI, which can answer pre-built questions and comprehend context of a
conversation. A company can also benefit from interactive AI by improving the internal processes in the organization. A recent project that
we worked on was developing a chatbot to facilitate vacation bookings for corporate clients.

4. Text AI ⃖⃖⃗𝜒4: Text AI can allow businesses to recognize text, convert speech into text, translate texts, and generate content. This type of AI can
still be used by companies even if they are not Google or Amazon. Text AI can be used, for instance, to power internal corporate knowledge
bases. Using AI-powered knowledge bases, you can find relevant documents regardless of their keywords: the knowledge base can even
find documents without keywords. AI can build semantic maps and recognize synonyms by using semantic search and natural language
processing.

5. Visual AI ⃖⃖⃗𝜒5: With the help of visual artificial intelligence, businesses can identify, recognize, classify, and sort objects based on their
appearance and also gain insights from their images and videos. A computer system is used by insurance companies in order to estimate
the amount of damage caused by damaged cars, and machines can grade apples based on their color and their size according to computer
programs. This type of artificial intelligence can be seen in the fields of computer vision and augmented reality. In this example, we will
show you how we developed a face recognition solution for a retailer to enhance and personalize customer service so that you are able to see
for yourself how visual AI can be valuable for retailers. A further application we developed was an application for automatically inspecting
the quality of the details manufactured by manufacturers, enabling them to control the quality of the products at any time.

There are four main factors to consider when selecting AIs are ‘‘operating processes’’ (C1), ‘‘costs’’ (C2), ‘‘time’’ (C3) and ‘‘externalities’’ (C4).
Corresponding weights are 𝑤 = {0.4, 0.3, 0.2, 0.1}. The objective of this process is to evaluate the options and select the best by evaluating them
gainst the criteria.

Table 1 represents the DM values.
Table 2 represents the 𝛶 values 𝛶 =

∏

(

𝛥T
𝜒 , 𝛥

I
𝜒 , 𝛥

F
𝜒

)

The Table 3 shows that the information for each choice with the LSRNSVWG operator:
Determine the optimum values of the following alternatives are ⃖⃖⃗𝜒𝑃 =

⟨

, 1, 1, 0
⟩

and ⃖⃖⃗𝜒𝑁 =
⟨

0, 0, 1
⟩

.
The following table displays the ED for each option under the positive and negative ideal values: D𝑃

1 = 0.3282, D𝑃
2 = 0.3345, D𝑃

3 = 0.3502,
D𝑃
4 = 0.3369, D𝑃

5 = 0.3338 and D𝑁
1 = 0.022, D𝑁

2 = 0.0283, D𝑁
3 = 0.044, D𝑁

4 = 0.0307, D𝑁
5 = 0.0276.

The values of relative nearness are as follows. D⋆
1 = 0.0629, D⋆

2 = 0.0779, D⋆
3 = 0.1116, D⋆

4 = 0.0836, D⋆
5 = 0.0763.

Ranking of alternatives are ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1.
Consequently, the Interactive AI ⃖⃖⃗𝜒3 is best.

6.3. Comparison for proposed and some existing methods

In addition to applying fuzzy information measures to MADM, pattern recognition, clustering analysis, and picture segmentation, fuzzy
information measures can also be used in pattern recognition. The results of both activities are sometimes the same. As a result, the results may
vary. A fuzzy entropy metric or fuzzy knowledge metric may be used in a MADM situation to rank alternatives. To demonstrate their advantages

and applicability, we compare our models with some existing ones. A comparison was conducted between several existing models and the proposed
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Table 4
Different distances.
𝛤 = 1 𝑇𝑂𝑃𝑆𝐼𝑆 − 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑇𝑂𝑃𝑆𝐼𝑆 − 𝐻𝑎𝑚𝑚𝑖𝑛𝑔

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑) 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑)

𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴 ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1 ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1

Table 5
Existing different distances.
𝛤 = 1 𝑇𝑂𝑃𝑆𝐼𝑆 − 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑇𝑂𝑃𝑆𝐼𝑆 − 𝐻𝑎𝑚𝑚𝑖𝑛𝑔

distance distance

PNSIVWA (Palanikumar et al., 2022) ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1 ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1
Log qVWA (Palanikumar et al., 2024) ⃖⃖⃗𝜒1 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒3 ⃖⃖⃗𝜒1 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒3

Table 6
LSRNSVWA values.

𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝛤 = 2)

⃖⃖⃗𝜒1
⟨

[0.2646, 0.2706], [0.2426, 0.2534], [0.2256, 0.2327]
⟩

⃖⃖⃗𝜒2
⟨

[0.2672, 0.2782], [0.2299, 0.2346], [0.2147, 0.215]
⟩

⃖⃖⃗𝜒3
⟨

[0.2866, 0.298], [0.2244, 0.2266], [0.1526, 0.1584]
⟩

⃖⃖⃗𝜒4
⟨

[0.2723, 0.29], [0.2626, 0.2635], [0.1954, 0.213]
⟩

⃖⃖⃗𝜒5
⟨

[0.2606, 0.2878], [0.2442, 0.2462], [0.2076, 0.2205]
⟩

Fig. 2. EDs of different approaches using LSRNSVWA.

ones. Due to its value and advantages, it proves to be beneficial. Palanikumar et al. (2022) discusses the development of a new type of NSS with
normal AOs. As a result of the facts outlined above, we utilize the LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG approaches. There
are different distances as follows:

Table 4 shows that different AOs based on ED and HD. Table 5 shows that different AOs for interval valued Pythagorean normal weighted
averaging, interval valued Pythagorean normal weighted geometric, generalized interval valued Pythagorean normal weighted averaging and
generalized interval valued Pythagorean normal weighted geometric (Palanikumar et al., 2022).

6.4. Data analysis

MADM approaches are more reliable in certain circumstances than in others. There is a list of prerequisites for the tests. Based on different 𝛤
values, the LSRNSVWA method calculates closeness values and rankings as follows. Adjust the 𝛤 = 2 setting for the LSRNSVWA approaches. Orders
and values of relative proximity are as follows:

Table 6 shows that for each choice with the LSRNSVWA operator: The positive and negative ideal values such as ⃖⃖⃗𝜒𝑃 =
⟨

[1, 1], [1, 1], [0, 0]
⟩

and
⃖⃖⃗𝜒𝑁 =

⟨

[0, 0], [0, 0], [1, 1]
⟩

.
The following table shows the ED between every choice using the both ideal values: D𝑃

1 = 0.328, D𝑃
2 = 0.3336, D𝑃

3 = 0.3477, D𝑃
4 = 0.3332,

D𝑃
5 = 0.3323 and D𝑁

1 = 0.0218, D𝑁
2 = 0.0275, D𝑁

3 = 0.0415, D𝑁
4 = 0.027, D𝑁

5 = 0.0261.
The relative nearness values are D⋆

1 = 0.0624, D⋆
2 = 0.076, D⋆

3 = 0.1066, D⋆
4 = 0.0751, D⋆

5 = 0.0729.
As can be seen from the data above, the alternate ranking is determined using the LSRNSVWA operator. If 𝛤 = 2, the ranking of the alternatives

in a new order is ⃖⃖⃗𝜒3 ⪰ ⃖⃖⃗𝜒2 ⪰ ⃖⃖⃗𝜒4 ⪰ ⃖⃖⃗𝜒5 ⪰ ⃖⃖⃗𝜒1. As a result, ⃖⃖⃗𝜒4 becomes the preferred option to ⃖⃖⃗𝜒2. The basis for alternative rankings is the 𝛤 operators
LSRNSVWG, LSRGNSVWA, and LSRGNSVWG.

Fig. 2 shows different EDs using LSRNSVWA.
11 
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6.5. Advantages

This paper discusses the proposed concept in terms of its advantages and benefits. It is a generalized form of the square root aggregating operator
based on VS. By reducing the square of truth membership, the root of indeterminacy membership, and the root of false membership to one, LSRNSVS
becomes a square root operator based on VS. Several new square root operators are introduced, including LSRNSVWA, LSRNSVWG, LSRNSGVWA,
and LSRNSGVWG. One of the main advantages of this method is the ability to objectively and subjectively assess DM procedures using several
experts. A robotic selection can be characterized as an uncertain series of steps and procedures, which makes it an exciting topic for analysis. Using
the illustrative example, several options and alternatives depend on the complex attitudinal characteristics of decision-makers among an ideal set
of characteristics, thereby making it possible to compare the available options and choices. An essential component of this method is a square root
weighted operator derived from the weighted aggregating model. In other words, it exhibits the same properties. Its characteristics are extended to
consider a broader range of complex problems as the primary motivation. Among the main advantages of square root weighted operators are that
they introduce distance measures, namely HDs and EDs, which can be used to compare an optimal set of preferences with alternatives or options
chosen by decision-makers.

6.6. Comparison analysis

This method is effective because it considers the relationships between different attributes. Thus, the proposed method is better ranking results.
Therefore, this method is more efficient than in Palanikumar et al. (2022) and Palanikumar et al. (2024). In this study, ED and HD were established
for LSRNSVS. ED and HD were compared to demonstrate their superiority. We introduced a new concept of ED and HD for LSRNSVS, which were
presented in a simple mathematical form. This represents an advantage in actual calculations. Consequently, a numerical example illustrated the
superiority of the ED and HD when these two factors were considered. After that, all of the alternatives were ranked and the best option was
chosen. As a result, Interactive AI ⃖⃖⃗𝜒3 was the best alternative. Tables 4 and 5 compared the proposed method with the existing approaches. As
discussed above, the proposed method appeared to be more general and accurate than some existing approaches. Thus, it can be used to design
intelligent systems for image recognition and other real-world applications.

7. Conclusion

We presented both ED and HD for LSRNSVSs. The mathematical simplicity of these distance measures made them advantageous. A numerical
example illustrated the superiority of ED and HD. It was demonstrated that both ED and HD are applicable. The rules for aggregation operations
have been proposed for LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG. As well as providing some examples, we discussed some of
the features of these operators. By using the LSRNSV multi-attribute decision-making technique, it was possible to select the best course of action
from multiple options when uncertain and inconsistent conditions exist. The LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG operators
were applied to MADM issues based on 𝛤 . It was possible to discover the distinct ordering of alternatives by using the LSRNSVWA, LSRNSVWG,
LSRGNSVWA, and LSRGNSVWG operators. As a result of the study presented above, 𝛤 had the greatest influence over alternative rankings. By
setting 𝛤 according to the actual scenario, the decision-makers might arrive at the most reasonable ranking. A number of practical uses could be
made of the ED and HD measures.

A method for handling MADM problems with uncertainty in the form of vague information was developed to demonstrate the effectiveness and
consistency of the suggested square root AOs. A real-life example is provided to assess and demonstrate the applicability of our proposed method.
The recommended aggregation methods were tested using the existing tools to prove their superiority and validity. The proposed AO is more
reliable and accurate than the existing method. The square root AO, which we suggest for the MADM problem, is a novel method for identifying
the best alternative. The aggregating operator uses distance measures, such as EDs and HDs, to consider an optimal set of preferences. Generalized
aggregating operators provide a parameterized family of distance AOs useful for DM. Consequently, the results may lead to different decisions
depending on the case.

The proposed model can solve several real-life problems, such as AI in education, health care, business, manufacturing, roads, machine learning,
game theory, and computer science. Our proposed technique for determining the best option in MADM, the square root AO, provides a novel
approach. This methodology has a wide range of potential applications. For example, could be also used in studies on green supplier selection,
industrial strategies, risk assessment, predictive maintenance, as well as other innovative DM domains.
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Appendix

Proof of Theorem 1. . Now,
(

D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) + D𝐸 (⃖⃖⃗𝜒2, ⃖⃖⃗𝜒3)
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(𝛯𝑏 − 𝛯𝑐 )2 + (𝛯𝑎 − 𝛯𝑏) × (𝛯𝑏 − 𝛯𝑐 )

)

= 1
4
(𝛯𝑎 − 𝛯𝑏 + 𝛯𝑏 − 𝛯𝑐 )2 +

1
8
(𝛯𝑎 − 𝛯𝑏 + 𝛯𝑏 − 𝛯𝑐 )2

= 1
4
(𝛯𝑎 − 𝛯𝑐 )2 +

1
8
(𝛯𝑎 − 𝛯𝑐 )2

= 1
4

[

(𝛯𝑎 − 𝛯𝑐 )2 +
1
2
(𝛯𝑎 − 𝛯𝑐 )2

]

= D𝐸 (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒3)2.

The proof of Theorem 3. It was proved using mathematical induction.
If 𝑛 = 2, then LSRNSVWA(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) = 𝜉1 ⃖⃖⃗𝜒1

⋀

𝜉2 ⃖⃖⃗𝜒2, where

𝜉1 ⃖⃖⃗𝜒1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

[

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )
)𝜉1

)2𝛤
,
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

)𝜉1
)2𝛤

]

,
[

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)
)𝜉1

)𝛤
,
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)
)𝜉1

)𝛤
]

,
[

(log inf 𝛥F)𝜉1 , (log sup(1 − 𝛥T))𝜉1
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎣

𝛶𝑖 1 𝛶𝑖 1
⎦

13 
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𝜉2 ⃖⃖⃗𝜒2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )
)𝜉2

)2𝛤
,
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

)𝜉2
)2𝛤

]

,
[

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)
)𝜉2

)𝛤
,
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)
)𝜉2

)𝛤
]

,
[

(log𝛶𝑖 inf 𝛥
F
2 )

𝜉2 , (log𝛶𝑖 sup(1 − 𝛥T
2 ))

𝜉2
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Now,

𝜉1 ⃖⃖⃗𝜒1
⋀

𝜉2 ⃖⃖⃗𝜒2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )
)𝜉1)

+
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )
)𝜉2)

−
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )
)𝜉1)

⋅
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )
)𝜉2)

⎞

⎟

⎟

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎜

⎝

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

)𝜉1)
+
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

)𝜉2)

−
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

)𝜉1)
⋅
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

)𝜉2)

⎞

⎟

⎟

⎟

⎠

2𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)
)𝜉1)

+
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)
)𝜉2)

−
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)
)𝜉1)

⋅
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)
)𝜉2)

⎞

⎟

⎟

⎟

⎠

𝛤

,

⎛

⎜

⎜

⎜

⎝

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)
)𝜉1)

+
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)
)𝜉2)

−
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)
)𝜉1)

⋅
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)
)𝜉2)

⎞

⎟

⎟

⎟

⎠

𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

[

(log𝛶𝑖 inf 𝛥
F
1 )

𝜉1 (log𝛶𝑖 inf 𝛥
F
2 )

𝜉2 , (log𝛶𝑖 sup(1 − 𝛥T
1 ))

𝜉1 (log𝛶𝑖 sup(1 − 𝛥T
2 ))

𝜉2
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎣

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )
)𝜉1

⋅
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )
)𝜉2

)2𝛤
,

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

)𝜉1
⋅
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

)𝜉2
)2𝛤

⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)
)𝜉1

⋅
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)
)𝜉2

)𝛤
,

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)
)𝜉1

⋅
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)
)𝜉2

)𝛤

⎤

⎥

⎥

⎥

⎥

⎦

,

[

(log𝛶𝑖 inf 𝛥
F
1 )

𝜉1 ⋅ (log𝛶𝑖 inf 𝛥
F
2 )

𝜉2 , (log𝛶𝑖 sup(1 − 𝛥T
1 ))

𝜉1 ⋅ (log𝛶𝑖 sup(1 − 𝛥T
2 ))

𝜉2
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(

1 −
2
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
2
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖
)2𝛤]

,

[(

1 −
2
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
2
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,
[ 2
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖 )

𝜉𝑖 ,
2
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))
𝜉𝑖

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Also, valid for 𝑛 ⪰ 3 and hence 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑚) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

[(

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖
)2𝛤]

,
[(

1 −
𝑚
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
𝑚
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,
[ 𝑚
⋁

(log𝛶𝑖 inf 𝛥
F
𝑖 )

𝜉𝑖 ,
𝑚
⋁

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

𝜉𝑖

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

⎣ 𝑖=1 𝑖=1 ⎦

14 
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If 𝑛 = 𝑚 + 1, then LSRNSVWA (⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑚, ⃖⃖⃗𝜒𝑚+1)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚
⋀

𝑖=1

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖)

+
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑚+1)

)𝜉𝑚+1)

−
𝑚
⋁

𝑖=1

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖)

⋅
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑚+1)

)𝜉𝑚+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚
⋀

𝑖=1

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖)
+
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑚+1))

)𝜉𝑚+1)

−
𝑚
⋁

𝑖=1

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖)
⋅
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑚+1))

)𝜉𝑚+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚
⋀

𝑖=1

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖)

+
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑚+1)

)𝜉𝑚+1)

−
𝑚
⋁

𝑖=1

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖)

⋅
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑚+1)

)𝜉𝑚+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝛤

,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚
⋀

𝑖=1

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖)

+
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑚+1)

)𝜉𝑚+1)

−
𝑚
⋁

𝑖=1

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖)

⋅
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑚+1)

)𝜉𝑚+1)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

[ 𝑚
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖 )

𝜉𝑖 ⋅ (log𝛶𝑖 inf 𝛥
F
𝑚+1)

𝜉𝑚+1 ,
𝑚
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))
𝜉𝑖 ⋅ (log𝛶𝑖 sup(1 − 𝛥T

𝑚+1))
𝜉𝑚+1

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(

1 −
𝑚+1
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
𝑚+1
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖
)2𝛤]

,

[(

1 −
𝑚+1
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
𝑚+1
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,
[𝑚+1
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖 )

𝜉𝑖 ,
𝑚+1
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))
𝜉𝑖

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The proof of Theorem 4. Given that [inf 𝛥T
𝑖 , sup(1 − 𝛥F

𝑖 )] = [inf 𝛥T, sup(1 − 𝛥F)], [inf 𝛥I
𝑖 , sup𝛥

I
𝑖 ] = [inf 𝛥I, sup𝛥I] and [inf 𝛥F

𝑖 , sup(1 − 𝛥T
𝑖 )] =

[inf 𝛥F, sup(1 − 𝛥T)], for 𝑖 = 1, 2,… , 𝑛 and
𝑛
⋀

𝑖=1
𝜉𝑖 = 1. Now, 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)𝜉𝑖

)2𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)𝜉𝑖
)2𝛤]

,
[(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)𝜉𝑖

)𝛤

,

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)𝜉𝑖

)𝛤]

,
[ 𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖 )

𝜉𝑖 ,
𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))
𝜉𝑖

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)

𝑛
⋀

𝑖=1
𝜉𝑖
⎞

⎟

⎟

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎜

⎜

⎝

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)

𝑛
⋀

𝑖=1
𝜉𝑖
⎞

⎟

⎟

⎟

⎟

⎠

2𝛤
⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)

𝑛
⋀

𝑖=1
𝜉𝑖
⎞

⎟

⎟

⎟

⎟

⎠

𝛤

,

⎛

⎜

⎜

⎜

⎜

⎝

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)

𝑛
⋀

𝑖=1
𝜉𝑖
⎞

⎟

⎟

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

(log𝛶𝑖 inf 𝛥
F
𝑖 )

𝑛
⋀

𝑖=1
𝜉𝑖
, (log𝛶𝑖 sup(1 − 𝛥T

𝑖 ))

𝑛
⋀

𝑖=1
𝜉𝑖
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

[

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )
)

)2𝛤
,
(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))

)

)2𝛤
]

,
[

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )
)

)𝛤
,
(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )
)

)𝛤
]

,
[

(log inf 𝛥F), (log sup(1 − 𝛥T))
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

⎣

𝛶𝑖 𝑖 𝛶𝑖 𝑖
⎦
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The proof of Theorem 5. Since, log𝛶𝑖 inf 𝛥
T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

T
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

T = sup log𝛶𝑖 inf 𝛥
T
𝑖𝑗 log𝛶𝑖 sup(1 − 𝛥F)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= inf log𝛶𝑖 sup(1−𝛥F
𝑖𝑗 ),

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥F) =

up log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 ) and log𝛶𝑖 inf 𝛥

T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⪯ log𝛶𝑖 inf 𝛥

T
𝑖𝑗 ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

T and log𝛶𝑖 sup(1 − 𝛥F)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⪯ log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 ) ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥F). Now, log𝛶𝑖 inf 𝛥

T

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
+

og𝛶𝑖 sup(1 − 𝛥F)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(log𝛶𝑖 inf 𝛥
T)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤

+
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(log𝛶𝑖 sup(1 − 𝛥F))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤

⪯

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖𝑗 )
)𝜉𝑖

)2𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 ))

)𝜉𝑖
)2𝛤

⪯

⎛

⎜

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 −
2𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 inf 𝛥

T)
)𝜉𝑖

⎞

⎟

⎟

⎟

⎠

2𝛤

+

⎛

⎜

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 −
2𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 sup(1 − 𝛥F))

)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

2𝛤

=
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

T +
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥F) .

Since, log𝛶𝑖 inf 𝛥
I

⏟⏞⏞⏞⏟⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

I
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

I = sup log𝛶𝑖 inf 𝛥
I
𝑖𝑗 log𝛶𝑖 sup𝛥

I

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 sup𝛥

I
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup𝛥

I = sup log𝛶𝑖 sup𝛥
I
𝑖𝑗 and log𝛶𝑖 inf 𝛥

I

⏟⏞⏞⏞⏟⏞⏞⏞⏟
⪯

log𝛶𝑖 inf 𝛥
I
𝑖𝑗 ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

I and log𝛶𝑖 sup𝛥
I

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⪯ log𝛶𝑖 sup𝛥

I
𝑖𝑗 ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup𝛥

I. Now, log𝛶𝑖 inf 𝛥
I

⏟⏞⏞⏞⏟⏞⏞⏞⏟
+ log𝛶𝑖 sup𝛥

I

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(log𝛶𝑖 inf 𝛥
I)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤

+
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(log𝛶𝑖 sup𝛥
I)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤

⪯

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖𝑗 )
)𝜉𝑖

)𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖𝑗 )
)𝜉𝑖

)𝛤

⪯

⎛

⎜

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 −
𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 inf 𝛥

I)
)𝜉𝑖

⎞

⎟

⎟

⎟

⎠

𝛤

+

⎛

⎜

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 −
𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 sup𝛥

I)
)𝜉𝑖

⎞

⎟

⎟

⎟

⎠

𝛤

=
⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

I +
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup𝛥

I .

Since, log𝛶𝑖 inf 𝛥
F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
= inf log𝛶𝑖 inf 𝛥

F
𝑖𝑗 ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F = sup log𝛶𝑖 inf 𝛥
F
𝑖𝑗 log𝛶𝑖 sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= inf log𝛶𝑖 sup(1 − 𝛥T
𝑖𝑗 ),

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T) = sup log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ) and

log𝛶𝑖 inf 𝛥
F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
⪯ log𝛶𝑖 inf 𝛥

F
𝑖𝑗 ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F and log𝛶𝑖 sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⪯ log𝛶𝑖 sup(1 − 𝛥T
𝑖𝑗 ) ⪯

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T). Now,

log𝛶𝑖 inf 𝛥
F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
+ log𝛶𝑖 sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=
𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
)𝜉𝑖 +

𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)𝜉𝑖

⪯
𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖𝑗 )

𝜉𝑖 +
𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ))
𝜉𝑖

⪯
𝑛
⋁

𝑖=1
(
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F)𝜉𝑖 +
𝑛
⋁

𝑖=1
(
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T))𝜉𝑖

=
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log inf 𝛥F +

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log sup(1 − 𝛥T) .
𝛶𝑖 𝛶𝑖
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Hence,

𝑛
⋀

𝑖=1
𝜉𝑖

2
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(log𝛶𝑖 inf 𝛥
T)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

2𝛤

+

⎛

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(log𝛶𝑖 sup(1 − 𝛥F))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

2𝛤

2

−

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(log𝛶𝑖 inf 𝛥
I)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

𝛤

+

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(log𝛶𝑖 sup𝛥
I)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

𝛤

2

+1 −

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 inf 𝛥

F)𝜉𝑖
⎞

⎟

⎟

⎟

⎠

+

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
log𝛶𝑖 sup(1 − 𝛥T))𝜉𝑖

⎞

⎟

⎟

⎟

⎠

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⪯

𝑛
⋀

𝑖=1
𝜉𝑖

2
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖𝑗 )
)𝜉𝑖 ⎞

⎟

⎟

⎠

2𝛤

+
⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖𝑗 ))

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

2

−

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖𝑗 )
)𝜉𝑖 ⎞

⎟

⎟

⎠

𝛤

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖𝑗 )
)𝜉𝑖 ⎞

⎟

⎟

⎠

𝛤

2

+1 −

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖𝑗 )

𝜉𝑖
⎞

⎟

⎟

⎠

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ))
𝜉𝑖
⎞

⎟

⎟

⎠

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⪯

𝑛
⋀

𝑖=1
𝜉𝑖

2
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 −
2𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 inf 𝛥

T
𝑖𝑗 )
)𝜉𝑖

⎞

⎟

⎟

⎟

⎟

⎠

2𝛤

+

⎛

⎜

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 −
2𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 sup(1 − 𝛥F

𝑖𝑗 ))
)𝜉𝑖

⎞

⎟

⎟

⎟

⎟

⎠

2𝛤

2

−

√

√

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 −
𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 inf 𝛥

I
𝑖𝑗 )
)𝜉𝑖

⎞

⎟

⎟

⎟

⎟

⎠

𝛤

+

√

√

√

√

√

√

√

√

√

√

⎛

⎜

⎜

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 −
𝛤

√

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(log𝛶𝑖 sup𝛥

I
𝑖𝑗 )
)𝜉𝑖

⎞

⎟

⎟

⎟

⎟

⎠

𝛤

2

+1 −

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑖𝑗 )

𝜉𝑖
⎞

⎟

⎟

⎠

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

𝑖𝑗 ))
𝜉𝑖
⎞

⎟

⎟

⎠

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Therefore,
⟨

[ inf 𝛥T
⏟⏟⏟

, sup(1 − 𝛥F)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

], [ inf 𝛥I
⏟⏟⏟

, sup𝛥I
⏟⏟⏟

], [
⏞⏞⏞
inf 𝛥F ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
sup(1 − 𝛥T)]

⟩

⪯ 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴(⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛)

⪯
⟨

[
⏞⏞⏞
inf 𝛥T ,

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
sup(1 − 𝛥F)], [

⏞⏞⏞
inf 𝛥I ,

⏞⏞⏞
sup𝛥I ], [ inf 𝛥F

⏟⏟⏟
, sup(1 − 𝛥T)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

]
⟩

.

The proof of Theorem 6. For any 𝑖,
√

(

log𝛶𝑖 inf 𝛥
T
𝑡𝑖𝑗

)

+
√

(

log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖𝑗
)
)

⪯
√

(

log𝛶𝑖 inf 𝛥
T
ℎ𝑖𝑗

)

+
√

(

log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖𝑗

)
)

.

Therefore, 1 − 2𝛤

√

(

log𝛶𝑖 inf 𝛥
T
𝑡𝑖

)

+ 1 − 2𝛤

√

(

log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖
)
)

⪰ 1 − 2𝛤

√

(

log𝛶𝑖 inf 𝛥
T
ℎ𝑖

)

+ 1 − 2𝛤

√

(

log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖
)
)

.
Hence,

𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(

log𝛶𝑖 inf 𝛥
T
𝑡𝑖

)

)𝜉𝑖

+
𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(

log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖
)
)

)𝜉𝑖

⪰

𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(

log𝛶𝑖 inf 𝛥
T
ℎ𝑖

)

)𝜉𝑖

+
𝑛
⋁

𝑖=1

(

1 − 2𝛤

√

(

log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖
)
)

)𝜉𝑖

and
(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑡𝑖
)
)𝜉𝑖

)2𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖
))
)𝜉𝑖

)2𝛤

⪯

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
ℎ𝑖
)
)𝜉𝑖

)2𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖
))
)𝜉𝑖

)2𝛤

For any 𝑖,
√

(

log𝛶𝑖 inf 𝛥
I
𝑡𝑖𝑗

)

+
√

(

log𝛶𝑖 sup𝛥
I
𝑡𝑖𝑗

)

⪯
√

(

log𝛶𝑖 inf 𝛥
I
ℎ𝑖𝑗

)

+
√

(

log𝛶𝑖 sup𝛥
I
ℎ𝑖𝑗

)

.

Therefore, 1 − 𝛤

√

(

log𝛶 inf 𝛥I
)

+ 1 − 𝛤

√

(

log𝛶 sup𝛥I
)

⪰ 1 − 𝛤

√

(

log𝛶 inf 𝛥I
)

+ 1 − 𝛤

√

(

log𝛶 sup𝛥I
)

.

𝑖 𝑡𝑖 𝑖 𝑡𝑖 𝑖 ℎ𝑖 𝑖 ℎ𝑖
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Hence,

𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(

log𝛶𝑖 inf 𝛥
I
𝑡𝑖

)

)𝜉𝑖

+
𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(

log𝛶𝑖 sup𝛥
I
𝑡𝑖

)

)𝜉𝑖

⪰

𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(

log𝛶𝑖 inf 𝛥
I
ℎ𝑖

)

)𝜉𝑖

+
𝑛
⋁

𝑖=1

(

1 − 𝛤

√

(

log𝛶𝑖 sup𝛥
I
ℎ𝑖

)

2

)𝜉𝑖

and
(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑡𝑖
)
)𝜉𝑖

)𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑡𝑖
)
)𝜉𝑖

)𝛤

⪯

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
ℎ𝑖
)
)𝜉𝑖

)𝛤

+

(

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
ℎ𝑖
)
)𝜉𝑖

)𝛤

.
For any 𝑖,

(

log𝛶𝑖 inf 𝛥
F
𝑡𝑖𝑗

)

+
(

log𝛶𝑖 sup(1 − 𝛥T
𝑡𝑖𝑗
)
)

⪰
(

log𝛶𝑖 inf 𝛥
F
ℎ𝑖𝑗

)

+
(

log𝛶𝑖 sup(1 − 𝛥T
ℎ𝑖𝑗

)
)

.
Therefore,

Therefore, 1 −

( 𝑛
⋁

𝑖=1
log𝛶𝑖 inf 𝛥

F
𝑡𝑖𝑗

)

+

( 𝑛
⋁

𝑖=1
log𝛶𝑖 sup(1 − 𝛥T

𝑡𝑖𝑗
)

)

2
⪯

1 −

( 𝑛
⋁

𝑖=1
log𝛶𝑖 inf 𝛥

F
ℎ𝑖𝑗

)

+

( 𝑛
⋁

𝑖=1
log𝛶𝑖 sup(1 − 𝛥T

ℎ𝑖𝑗
)

)

2
.

Hence,

1
2
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑡𝑖)
)𝜉𝑖 ⎞

⎟

⎟

⎠

2𝛤

+
⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑡𝑖))

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

2

−

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑡𝑖)
)𝜉𝑖 ⎞

⎟

⎟

⎠

2𝛤

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑡𝑖)
)𝜉𝑖 ⎞

⎟

⎟

⎠

2𝛤

2

+1 −

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
𝑡𝑖𝑗 )

⎞

⎟

⎟

⎠

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T)𝑡𝑖𝑗 )

⎞

⎟

⎟

⎠

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⪯ 1
2
×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
ℎ𝑖)

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

+
⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
ℎ𝑖))

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

2

−

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
ℎ𝑖)

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

1−

𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
ℎ𝑖)

)𝜉𝑖 ⎞
⎟

⎟

⎠

2𝛤

2

+1 −

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 inf 𝛥

F
ℎ𝑖𝑗 )

⎞

⎟

⎟

⎠

+

√

√

√

√

√

√

⎛

⎜

⎜

⎝

𝑛
⋁

𝑖=1
(log𝛶𝑖 sup(1 − 𝛥T

ℎ𝑖𝑗 ))
⎞

⎟

⎟

⎠

2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Hence, 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴
(

⃖⃖⃗𝜒1, ⃖⃖⃗𝜒2,… , ⃖⃖⃗𝜒𝑛
)

⪯ 𝐿𝑆𝑅𝑁𝑆𝑉𝑊 𝐴
(

⃖⃖⃖⃖⃗𝑊 1, ⃖⃖⃖⃖⃗𝑊 2,… , ⃖⃖⃖⃖⃗𝑊 𝑛

)

.

he proof of Theorem 9. First to prove that,
𝑛
⋀

𝑖=1
𝜉𝑖 ⃖⃖⃗𝜒

𝛤
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤

,
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

1 −
𝑛
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

[

𝑛
⋁

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )
)𝛤

)2𝛤
)𝜉𝑖

,
𝑛
⋁

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

.

⎣ 𝑖=1 𝑖=1 ⎦
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Put 𝑛 = 2, 𝜉1𝜒1
⋀

𝜉2𝜒2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )

𝛤
)𝜉1

)2𝛤

+ 2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )

𝛤
)𝜉2

)2𝛤

− 2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
1 )

𝛤
)𝜉1

)2𝛤

⋅
2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
2 )

𝛤
)𝜉2

)2𝛤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

𝛤
)𝜉1

)2𝛤

+ 2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

𝛤
)𝜉2

)2𝛤

− 2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
1 ))

𝛤
)𝜉1

)2𝛤

⋅
2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
2 ))

𝛤
)𝜉2

)2𝛤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)

𝛤
)𝜉1

)𝛤

+ 𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)

𝛤
)𝜉2

)𝛤

− 𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
1)

𝛤
)𝜉1

)𝛤

⋅
𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
2)

𝛤
)𝜉2

)𝛤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝛤

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)

𝛤
)𝜉1

)𝛤

+ 𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)

𝛤
)𝜉2

)𝛤

− 𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
1)

𝛤
)𝜉1

)𝛤

⋅
𝛤

√

√

√

√

√

(

1 −
(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
2)

𝛤
)𝜉2

)𝛤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝛤

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎣

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
1 )
)𝛤

)2𝛤
)𝜉1

⋅

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
2 )
)𝛤

)2𝛤
)𝜉1

,

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
1 ))

)𝛤
)2𝛤

)𝜉1

⋅

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
2 ))

)𝛤
)2𝛤

)𝜉1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
2
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤

,
⎛

⎜

⎜

⎝

1 −
2
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
2
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

1 −
2
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

[

2
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )
)𝛤

)2𝛤
)𝜉𝑖

,
2
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In general,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤

,
⎛

⎜

⎜

⎝

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥F
𝑖 ))𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

2𝛤
⎤

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

1 −
𝑚
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤

,
⎛

⎜

⎜

⎝

1 −
𝑚
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟

⎟

⎠

𝛤
⎤

⎥

⎥

⎦

,

[

𝑚
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
F
𝑖 )
)𝛤

)2𝛤
)𝜉𝑖

,
𝑚
⋁

𝑖=1

(

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

If 𝑛 = 𝑚 + 1, then
𝑚
⋀

𝜉𝑖 ⃖⃖⃗𝜒
𝛤
𝑖 + 𝜉𝑚+1 ⃖⃖⃗𝜒

𝛤
𝑚+1 =

𝑚+1
⋀

𝜉𝑖 ⃖⃖⃗𝜒
𝛤
𝑖 .
𝑖=1 𝑖=1
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Now,
𝑚
⋀

𝑖=1
𝜉𝑖 ⃖⃖⃗𝜒

𝛤
𝑖 + 𝜉𝑚+1 ⃖⃖⃗𝜒

𝛤
𝑚+1 =

𝑚+1
⋀

𝑖=1
𝜉𝑖 ⃖⃖⃗𝜒

𝛤
𝑖 = 𝜉1 ⃖⃖⃗𝜒

𝛤
1

⋀

𝜉2 ⃖⃖⃗𝜒
𝛤
2

⋀

...
⋀

𝜉𝑚 ⃖⃖⃗𝜒
𝛤
𝑚

⋀

𝜉𝑚+1 ⃖⃖⃗𝜒
𝛤
𝑚+1

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2𝛤

√

√

√

√

√

(

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)𝜉𝑖
)2𝛤

+ 2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑚+1)

𝛤
)𝜉1

)2𝛤

− 2𝛤

√

√

√

√

√

(

1 −
𝑚
⋁

𝑖=1

(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑖 )𝛤

)𝜉𝑖
)2𝛤

⋅
2𝛤

√

√

√

√

√

(

1 −
(

1 − 2𝛤
√

(log𝛶𝑖 inf 𝛥
T
𝑚+1)

𝛤
)𝜉1

)2𝛤

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2𝛤

,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2𝛤

√

√
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√
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√
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𝛤
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⎟

⎟
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⎡

⎢

⎢
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⎢
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⎢
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⎢

⎣

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝛤

√

√

√

√

√

(
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√
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1 − 𝛤
√

(log𝛶𝑖 inf 𝛥
I
𝑚+1)

𝛤
)𝜉1

)𝛤

− 𝛤

√

√

√
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√

√
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√
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⎜
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)𝜉𝑖
)𝛤
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√

√
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√
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√

√
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𝛤

√

√

√

√
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I
𝑚+1)

𝛤
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⎢
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⋅
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Hence,
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⎜
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⎜

⎜

⎝

1 −
𝑚+1
⋁

𝑖=1

(

1 − 𝛤
√

(log𝛶𝑖 sup𝛥
I
𝑖 )𝛤

)𝜉𝑖
⎞

⎟
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⋁
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(
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(

1 − 2𝛤
√

(log𝛶𝑖 sup(1 − 𝛥T
𝑖 ))

)𝛤
)2𝛤

)𝜉𝑖
]

⎤

⎥

⎥

⎥

⎥

⎥

⎥
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⎥

⎥

⎥

⎦
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.

It is valid for any 𝑚.
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