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ARTICLE INFO ABSTRACT
Keywords: We introduce novel methodological techniques for decision-making with multiple attributes utilizing logarith-
Square root neutrosophic sets mic square root neutrosophic vague sets. One important thing is that we improved decision-making by adding

Euclidean distance

Hamming distance

Robotic intelligence
Multiple-attribute decision-making

logarithmic square root neutrosophic ambiguous weighted operators. Logarithmic square root, neutrosophic
imprecise weighted averaging, geometric procedures, and expanded versions of these are some of the data
processing methodologies that we explore. The use of Hamming distances and Euclidean distances in decision-
making situations is illustrated by real-world instances. To clarify the basic properties of these sets, the
research uses an algebraic framework. Numerous domains make use of neural networks, including translation,
medical diagnosis, and picture and speech recognition. Developing multipurpose artificially intelligent robots
with analytical, functional, visual, interactive, and textual capabilities relies heavily on the synergy between
computer science and machine tool technology. This is especially true when it comes to the evolution of
artificial intelligence. The operating procedures, expenses, time, and externalizes of an artificially intelligent
robot system should be considered while assessing its quality. Finding the best answer from a list of possibilities
is made easier with the help of expert views and established criteria. By comparing them to other methods, we
verify and show that the suggested models work. The study’s findings highlight the importance of the research.

1. Introduction

Robotics has its roots in the early industrial era, when basic automation devices were created to carry out repetitive and ordinary activities. More
developments in control engineering and computers in the ensuing decades made it possible to create increasingly complex robots that could carry
out a larger variety of activities. George Devol and Joseph Engelberger unveiled the first industrial robot in 1956, which was a huge turning point in
the history of robotics. Robots became a common tool in the manufacturing sector by the 1970s, especially in the manufacturing of automobiles. The
subsequent decades saw the creation of more compact and adaptable robots that could be employed in a variety of industries thanks to developments
in electronic and software engineering as well as shrinking. Modern robotics is developing quickly thanks to the combination of machine learning
(ML) and artificial intelligence (AI), which allows robots to interact with their surroundings on their own and carry out increasingly complicated
tasks. The most well-known sectors using robotics extensively include manufacturing, healthcare, logistics, and agriculture (Vijayakuymar and
Suresh, 2022; Oliveira et al., 2021). Robots can now evaluate enormous volumes of data, draw lessons from their experiences, and modify their
actions as necessary thanks to Al and ML algorithms (Soori et al., 2023). A comprehensive evaluation of current work on ML and human-robot
collaboration (HRC) was carried out by Semeraro et al. (2023) A thorough assessment of the literature on the applications and outcomes of
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Abbreviations

DM Decision making

MADM Multiple attribute decision-making

FS Fuzzy set

IVFS Interval-valued fuzzy set

IFS Intuitionistic fuzzy set

PyFS Pythagorean fuzzy set

PES Picture fuzzy set

IVPEFS Interval-valued Pythagorean fuzzy set

SFS Spherical fuzzy set

NS Neutrosophic set

MG Membership grade

NMG Non-membership grade

TMG Truth membership grade

FMG False membership grade

ED Euclidean distance

HD Hamming distance

VS Vague set

LSRNSVS Logarithmic square root neutrosophic vague set

LSRNSVN Logarithmic square root neutrosophic vague number

LSRNSVWA Logarithmic square root neutrosophic vague weighted averaging

LSRNSVWG Logarithmic square root neutrosophic vague weighted geometric

LSRGNSVWA Logarithmic square root generalized neutrosophic vague weighted
averaging

LSRGNSVWG Logarithmic square root generalized neutrosophic vague weighted
geometric

intelligent physical robots in the healthcare industry was finished by Huang et al. (2023). Robots are employed in a variety of production processes
because of their accuracy, consistency, and speed, including welding, assembling, and packaging. Another industry where robots can be extremely
helpful to medical personnel in diagnosing, operating, and recovering from injuries is healthcare. Robots can be used in agriculture for a variety
of tasks, such as planting, harvesting, and fertilizing crops. They offer benefits like cost-effectiveness, efficiency and precision.

Kaplan and Haenlein (2020) discussed the concept of Al. The concept of major economies engaging in substantial policy activities to promote Al
research and development is explained by Margetts and C (2019). Among the key technical subsystems that construct the current Al technological
paradigm are machine learning, neural networks, natural language processing (NLP), smart robots, knowledge graphs, and expert systems (Cresswell
et al., 2020; Yablonsky, 2019). In addition to ethical concerns, Al also poses a risk to society in terms of the impacts it will have on democracy
and the labor market. Technology assessment (TA) activities based on interdisciplinary TA are necessary to assess these risks and opportunities.
A number of studies have also claimed that Al can have an impact on all economic and social sectors, making it a general-purpose technology.
The development of deep learning technology will not only allow online platforms to reap market profits, but also provide social governance tools
that are highly efficient. Moreover, Al technology has the potential to transform social structures as it becomes increasingly applied in specific
economic and financial domains (Klinger et al., 2018; Rasskazov, 2020).

As real-world systems continually evolve, it can be challenging for decision-makers to choose the best course of action. It is possible to reduce
a number of goals to a single one, despite the difficulty. The restriction of people’s motivations, goals, and viewpoints was difficult for many
businesses. While making decisions, people or committees must consider multiple goals at once. Based on this view, decision-makers are prevented
from selecting the best course of action, the one that meets all practical requirements. Therefore, more practical and reliable methods are developed
for identifying the best option for decision-makers. Agostini et al. (2017) discussed the concept of an efficient interactive decision-making (DM)
framework for robotic applications. Many authors deal with the level of harmful emissions from courier companies and their impact on the
environment (Lazarevi¢ et al., 2020; Lazarevi¢ and Dobrodolac, 2020). Fulfilling the high expectations of customers is very challenging, therefore
some authors propose meta-heuristic algorithms to be used as a support in optimizing last-mile assignment problems (Zhang et al., 2022). Choosing
the appropriate vehicles and transportation modes for last-mile delivery is also an intricate question recently analyzed in the literature (Simic et al.,
2021; Svadlenka et al., 2020). Through technology development, we are in a position today to introduce vehicles based on the implementation
of artificial intelligence, i.e. last-mile delivery robots. In the literature, such robots are also called autonomous delivery vehicles (Lu et al., 2023;
Lazarevi¢ et al., 2023).

Decision-makers find it increasingly difficult to identify the optimal solution as real-world systems become increasingly complex. Selecting the
best option is possible despite the difficulty of deciding between alternatives. Opportunities, objectives, and viewpoint constraints are challenging
to create for many firms. In line with this, when DM, individuals or groups should consider multiple objectives at the same time. A wide variety of
MADM -related issues are dealt with every day. Our DM abilities need to be improved as a result. This field of study has been studied by a variety
of researchers using a range of methods. There are several uncertain theories proposed by them to deal with the uncertainties, including fuzzy
set (FS) (Zadeh, 1965), intuitionistic fuzzy set (IFS) (Atanassov, 1986), interval valued FS (IVFS) (Gorzalczany, 1987), vague set (Biswas, 2006),
Pythagorean fuzzy set (PyFS) (Yager, 2014), IVPFS (Peng and Yang, 2015), spherical FS (SFS) (Ashraf et al., 2019). A membership grade (MG)
indicates how well an FS fits into the specified set ranging from 0 to 1. An IFS concept was later introduced by Atanassov (1986), in which each
object has two MGs positive ¢ and negative f and satisfies 0 < £+ < 1, for &, p € [0, 1]. Yager (2014) developed the concept of PyFSs, which
are defined by their MGs and grade of non-memberships (NMGs) under the condition that £ + § > 1 to £2 + % < 1. Extensive research has been
conducted on the implementation of IFSs and PyFSs in several fields. They still have limited skills in expressing information. Consequently, the
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experts still had difficulties conveying the information in these sets and their associated information. The concept of a picture fuzzy set (PFS) was
developed by Cuong and Kreinovich to overcome this information. Therefore, it has been noted that PFS is an expanded version of IFS that can
accommodate additional ambiguities. In PFS, it was observed that MG ¢&, neutral ¢ and non-MG v with 0 < é+¢+v < 1; for &,¢,v € [0, 1]. Using the
PFS definition will ensure that expert opinions are conveyed, such as “yes”, “abstain”, “no”, and “refusal”, while also avoiding missing evaluation
details and encouraging the consistency of the acquired information between the actual decision environment and the evaluation data. There are
many applications and studies of PFS, but its concept has not been widely studied. Ashraf et al. (2019) defined the spherical fuzzy set (SFS) for
some AOs with MADM. In SFS, under the condition that 0 < &2 + ¢2 +v2 < | rather than 0 < £ + ¢ + v < 1. Linguistic spherical fuzzy AOs were
proposed by Jin et al. (2019) and discussed in MADM problems. SFSs and their applications in DM were introduced by Rafiq et al. (2019). A DM
problem is a property in which & + ¢2 > 1. Senapati and Yager (2020) proposed the concept of FFS in 2019. A characteristic feature of MG and
NMG is that their 0 < £3 4+ ¢3 < 1. A geometric AO on interval-valued PyFS (IVPFS) was discussed by Rahman et al. (2017). Rahman et al. (2018)
introduced the concept of IVPFS using Einstein AO as an effective method for MAGDM. Peng and Yang (2015) interacted interval valued PyFSs
with aggregation operators (AOs).

Yager (2014) developed PyFS, which is characterized by a square sum of its MG and NMG not exceeding one. In order to generalize IFS, Yager
used PyFS to build a model. A new concept was proposed by Yager (2016) in light of society’s continuous complexity and theory development.
The MG and NMG in the g-rung orthogonal pair FS (¢-ROFS) have power ¢, but the sum can never exceed one. The IFSs and PyFSs can all be
considered special cases of 4-ROFSs, therefore they are general. The use of g-ROFSs can thus express fuzzy information in a broader range. Because
the parameter g can be adjusted, ¢g-ROFSs are flexible and better suited to uncertain environments. An increase in ¢ can be made as ambiguity in
decision information increases. It is possible that some experts are influenced by both their own desires and their surroundings. Therefore, they may
have an MDG of 0.95 and an NMG of 0.55 when evaluating certain DM things. The fuzzy information cannot be described by IFNs and PFNs, but
¢-ROFNs can be described if parameter ¢ is increased. Due to this, the ¢-ROFS is more flexible and suitable for describing uncertain data. IVPyFSs
were created by Yang et al. in conjunction with the MADM (Yang and Chang, 2020) aggregating operations. Al-shami et al. (2022) examined square
root FS (SRFS) and its weighted aggregated operators in the context of DM.

Smarandache (1999) introduced a new theory called the NSS. IFSs and FSs differ from each other in that they are both neutral cognitive
systems. Neutosophy studies neutral cognition. Accordingly, the truth degree (TD), the indeterminacy degree (ID), and the falsehood degree (FD)
are assigned to each assertion. For each of the components of the universe in the NSS set, the degree of TD, ID, and FD falls into the range of [0, 1].
It has been shown from a philosophical standpoint that an NSS can generalize a classical set, an FS, an IFS, etc. Smarandache (1999) invented the
Pythagorean NSIV set (PNSIVS). Vagues sets (VSs) were introduced in Biswas (2006). There are two functions in VSs, a truth-membership function
t, and a false-membership function f,. Here, #,(x) represents the lower bound on the grade of membership for x, and f,(x) represents the lower
bound on the negation for x derived from the evidence against x. In [0, 1], #,(x) and f,(x) which sum does not exceed 1. VSs have a number of
proven applications (Bustince and Burillo, 1996; Kumar et al., 2007; Wang et al., 2006). Ejegwa (2018) discussed and extended distance metrics for
IFSs, such as Hamming distances (HDs), Euclidean distances (EDs), normalized HDs, and normalized EDs. Palanikumar et al. (2022) investigated
the Pythagorean NSNV AO using MADM. We see that the majority of the distance functions for PNSNIVSs are generalized in the Pythagorean NSIV
set (PNSIVS).

According to Zhang and Xu (2014), PyFS based on TOPSIS should be generalized to include MCDM. A number of practical MADM problems
were discussed by Hwang and Yoon (1981). Using MCDM with bipolar FS, Jana and Pal (2019) proposed a robust technique for handling n-
valued single-valued soft sets. Ullah et al. (2019) for their description of distance measuring for sophisticated PyFS with practical applications in
pattern recognition. A recently presented MCDM approach using single-valued trigonometric number (SVTrN) mappings was developed by Jana
and Pal (2021) using a new strategy for NSS dombi power AOs. Palanikumar et al. (2023) developed the medical robotic engineering management
in the interval neutrosophic square root approach. Palanikumar et al. (2024) discussed the concept of q-rung vague sets using multi-criteria
decision-making. Abed et al. (2023) studied neutrosophic relations in group theory.

The goal of this study is to clarify the significance of LSRNSVS data. We use aggregation procedures to extract data from LSRNSVS. As an
example, we will create a rating with these operators and apply it to DM issues. Consequently, the work’s main contributions are as follows:

1. Several algebraic properties of LSRNSVS have been established, such as associativity, distributivity, and idempotency.

2. Am LSRNSVN is characterized by HD and ED. The purpose of this method is to calculate the ED distance between two LSRNSVSs. In addition,
we have discussed the idea of converting LSRNSVNs into NFNs as well.

3. It is the purpose of this study to illustrate numerically how LSRNSVNs can be used to apply MADMs and AOs in real-world scenarios. The
LSRNSVN requires an algorithm to be developed. In addition, a normalized decision matrix must be determined by applying LSRNSVNs to
the response matrix.

4. A value must be derived for each concept discussed in the LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG.

5. The decision-maker can now use LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG operators in a flexible manner to choose the
ranking result based on their preference. As a result of its many advantages, we propose an extremely flexible method in this paper.

The seven sections of the paper are listed below. The introduction is located in Section 1. Section 2 provides a brief overview of the ideas involved.
The LSRNSVN-based MADM and its processes are discussed in Section 3. The distance between LSRNSVNSs is used by Section 4 to communicate
over MADM. The MADM for LSRNSVN based on a few aggregating processes is discussed in Section 5. There is a mathematical example, analysis,
and discussion of the MADM algorithm based on LSRNSV data in Section 6. There is a conclusion in Section 7.

2. Preliminaries

The following section will briefly review some key concepts related to our future studies.

Definition 1 (Yager, 2014). Let X be the universe, PyFS y = {0, (AE(Q), Af,(g)>|p 1S X}, AE : X - [0,1] and Af, : X — [0,1] are denotes the MD
and NMD of ¢ € X to y, respectively and 0 < (All:(g))2 + (A]f((o))2 <1.For y = (All:, AE) is called a Pythagorean fuzzy number (PyFN).

Definition 2 (Al-shami et al., 2022). The SRFS y = {o, (47(0). Af{(g))|g = X}, 4T X~ [0,1] and 4% : X ~ [0, 1] are denotes the MD and NMD of
0 € X to y, respectively and 0 < (AE(@))2 + 4 /A;F((o) <1.For y = (AE, AE) is called a square root fuzzy number (SRFN).

3
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Definition 3 (Peng and Yang, 2015). The PyIVES 7 = {o, <@(g),@(g)>)o = X}, where 47 : X — Ini([0. 1)) and 47 : X — I'n([0, 1]) are denotes the

MD and NMD of ¢ € X to y, respectively, and 0 < (AE”(Q))Z + (A])F("(o))2 <1.For 7 = <[AE’ , AE"], [A]f(’ , AJ;F{”D is called a Pythagorean interval-valued
fuzzy number (PyIVFN).

Definition 4 (Peng and Yang, 2015). Let 7 = <[AT’ , ATe], [AF! ,A]F“]>, 7 = ([AT’ , AT, 47! ,Aﬂ“]) and 7, = <[A“2T’ , AT, [4F" ,A§"]> be the PyIVENS,
and I" > 0. Then,

[T + (a2 = (AT2 - (472, (a2 + a592 = a7 - a3 ]

L. 41 /\){2 = [A]Fl . A]Fl A]Fu . A]Fu] ’
1 2’71 2
T1 Ti T T
2. 11 V7 = [Al '42"‘1""‘2“]’
. 1 2= g
(/A2 + (a2 — ()2 - 512, a2 o a5 — (a2 - a5 |

3.0 7= [[\/1—(1—(AT’)Z)F,\/I—(1—(AT")Z)F],[(AF’)F,(A]F”)F]],
4. 7" = [[(ATI)F7(AT14)F]’ [\/1 - _(A]FI)Z)F,\/I — (1 - (aFup)" ”

Definition 5 (Peng and Yang, 2015). For any PyIVFN ¥ = <[AT’ , AT (A, A]F"]>, the score function of 7 is

1
5@ = 3 (@™ + @™ - (@2 - @2, S@) e 1111,
Accuracy function of 7 is

1
HE) = 3 (@™ + @7 + @)+ @™?). HF) € (0,11
Definition 6. For any SRIVFN 7 = <[AT’ , AT, [A]F’,A]F“]>, the score function of 7 is

S@) = 3 (™2 + @™ - VAT - Va), s e -1,
Accuracy function of 7 is

HF) = % ((AT’)2 (AT 4 \/aF \/A]F”), HE) €0, 1].

Definition 7 (Smarandache, 1999). The NSS y = {o, (oE(g),oi(g),oE(g))‘o e X}, where p;ﬂ(‘ X = [0,1], o]; : X = [0,1] and o]f( : X = [0, 1] denote
the TD, ID and FD of ¢ € X to y, respectively and 0 < og(g) + oi(o) + ogF((o) <2.For y = (pg, g];, 0])F1> is called a neutrosophic fuzzy number (NSFN).

Definition 8 (Biswas, 2006). (i) A VS y, in X is a pair (T, .F,) T,.F, 1 X-1[01]are mappings and T,(@+F, (o<1, for all o € X, T, and
F 5 are called TD and FD, respectively. (ii) y,(¢) = [T n(,1- F @] is called the vague value of ¢ in y;.

Definition 9 (Biswas, 2006). (i) The two VSs are y; and y,. Then y; C y, if and only if y,(0) < x; " (0). That is, T n@ < T (0 and
1-F,(@<1-F, (o), forall peX.

(ii) The union of two VSs y, and y,, as X = y, U yp, Ty = max{T,.T, } and 1 —Fy = max{1 -F,.1-F,}=1-min{F, .F,}.

(iii) The intersection of two VSs y, and y, as X = y; Ny, Ty = min{T, T, } and 1 —Fy = min{1 -F,.1-F,}=1-max{F,.F, 1}
Definition 10 (Biswas, 2006). A VS y, of X, for all ¢ € X. Then

DT, =0 and F,(0=1Iis called zero VS of X.

(i) T n@=1 and F 7@ =0 is called unit VS of X.

3. Basic operations

In this section, some new logarithmic square root operations are introduced for square root neutrosophic vague numbers (LSRNSVNs) and some
aggregate operators are defined. Based on these basis characteristics, we can further explore linguistic developments, fuzzy numbers, and distance
measures. An important fundamental operation of the LSRNSVN is defined.

Definition 11. The LSRNSVS 7 in X is 7 = {o,([inf A7 sup(1 - A]f()], [inf A]i,supAHX], [inf A sup(1 - A?j)])‘g e X}, where 47 : X — Ini([0, 1)),
AT( : X = Int([0,1]) and E : X' - INT([0, 1]) are denotes the TD, ID and FD of ¢ € X to 7, respectively, it is observe that 0 < (logy sup(1 —A]f()(o))2+

logy sup 4L (o) + \/logy sup(1 - 4T)(0) < 2, where ¥ = [T (4. 4L, Af,). For 7 = ( [inf A7 sup(1- Af,)], [inf 4L sup AH , [inf A% sup(1 - AE)] > is called
a logarithmic square root neutrosophic vague number (LSRNSVN).

Definition 12. For any LSRNSVN 7 = <[inf AT sup(1 — Af)], [inf Ai,supAE{], [inf 48 sup(l — AE)] > the score function of 7 is SF) =

% (% - % +1-— %), where X = (logy inf AT)? + (logy sup(l — 4F))?, Y = 4/logy inf Al + /logy sup 4], Z = +/logy inf AF + +/logy sup(l — AT) and

S@) € [-1.1], where Y =[] (AE,AE{,A;F().
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Definition 13. Let 7 = <[inf AT, sup(1 — 4T)], [inf AL, sup 4", [inf AF, sup(1 — AT)]> is a square root neutrosophic vague number (LSRNSVN). The TD,
ID and FD are defined as [inf AT, sup(l — 4F)| = [logy inf 47, logy sup(1 — AF)], [inf 4%, sup A"] = [logy inf 47, logy sup AH] and [inf A7, sup(1 — 4T)] =
[1 — (1—logy inf 4F), 1—(1-logy sup(l —AT))], 0 € X respectively, where X is a non-empty set and [inf AT, sup(1—4F)], [inf 4T, sup 4], [inf AF, sup(1—
4M)] € (10, 17) and 0 < (logy sup(l — 47)(0))” + y/logy sup 41(e) + /logy sup(1 — AT)(e) = 2, where ¥ =[] (AE, AL 4 )

Definition 14. Let ¥ <[1nf AT, sup(1 — A47)], [inf A%, sup A"], [inf AT, sup(1 — AT)]> 71 = ([inf AT, sup(1 — 45)], [inf 4%, sup A1, [inf AT, sup(1 — 4T)]) and
72 = <[inf AT, sup(1 — A)], [inf A, sup 1], [inf 47, sup(1 — A;T)]> be the any three LSRNSVNs, and I' > 0 and ¥ = [ (AE, A, AIE). Then,

1. T /\72=

2r
(” logy, inf AT + 2’\-/10gyi inf 4T — 4 /logy, inf AT - 2’\_/10gYi inf A;T> ,

or
< *y/logy, sup(1 — A]f) + *{/logy, sup(l - A]ZF) — *y/logy, sup(1 — A]f)- *{/logy, sup(1 — Ag))

r
< Q/logyi inf AL + Q/logyi inf AL — Q/logyi inf AL - Q/logyi inf AHZ) : ’
rl
< Q/]ogyi sup A]% + Q/logyi sup AH2 - Q/logyi sup A]% . Q/logyi sup Ag)

[logYI inf A]f' . logYI inf A]zF,logy/_ sup(l — Ajlr) . logyl_ sup(l — A;T)]

N
N T
<
N
I

[logyi inf Aﬂll‘ - logy, inf Ajzr,logyi sup(l — A]f) - logy, sup(1 — AE)],
r
( Q/logyi inf AL + Q/logyl inf AL - Q/logyi inf AL - Q/logyl inf A%) ,
rl
( Q/]ogyl sup A]% + Q/logyl sup Ag - Q/logyl supA]% . {/10gyi sup Ag)
o
< Zq/logy, inf AF + Zg/logyi inf AF — 2§/1ogyi inf A7 - 2§/1ogyi inf A“;) ,
\/logy sup(l — AT) + */logy, sup(l - AT) — */logy, sup(1 - AT) *{/logy, sup(1 — AT)>

or or
- ” logy. 1anT) ) ,(l—(l— 2,r/logyl_sup(l—AJF)) ) ],

\/logy inf 47, \/logy sup AH] [(logy inf AF)T", (logy, sup(l — AT))F]

ar

>

[ logy, inf AT, (logy, sup(1 — A]F))r], [Q/logyi inf A]%, (/10gyi sup A]{] s
2r e
[( — *{/logy inf 4F) ) ,(1 -(1- *4/logy, sup(1 —4T)) ) ]
4. Different distance for LSRNSVN

ED and HD are used to calculate the differences between two elements, two sets, etc. For example, they can calculate the distance between FSs,
IVFSs, IFSs, interval-valued IFSs, and VSs. A few mathematical properties of the LSRNSVNs were introduced, as well as the ED and HD measures.

Definition 15. For any two LSRNSVNs 7, = ([inf AT, sup(1 — 45)], [inf 4T, sup 4], [inf AT, sup(1 — 4T)]) and 7, =< [inf 47, sup(1 — 43)], [inf 4%, sup 41],
linf A%, sup(1 — 4T)] > Then

[ H4X,-N-Z) _ 24X,-1-2, ] 2
4 4

—+

124x,-%-2) _ 24X%-%-2, 2
2 4 4

and

|2+X1—Y1—Zl _ 2+X2—Y2—Zz‘

1
2 " ‘2+X1—Y1—Zl _ 2+X2—Y2—Zz)
) 1

1
2

where Y =[] (AE, 4, A])F() and X, = (logy inf AT)? + (logy sup(1 — AF)2, ¥, = \/logyi inf AL + \/logyi supal, Z, = \/logyl inf 4% + \/logyi sup(1 — A7),
X, = (logy, inf ATY + (logy, sup(1 - A%, Y, = \/logyi inf AL + \/logyi sup 4% and Z, = \/logyi inf AT + \/logy’ sup(l — 4T).
Since Dy (71,72) and Dy (71,72> are represents the ED and HD between 7, and 7,, respectively.

Theorem 1. If any three LSRNSVNs 7, = ([inf AT,sup(1 — A7)], [inf 4%, sup A1, [inf 4T, sup(1 — AD)]), 7, = <[inf A7, sup(1 — 45)], [inf AL, sup 471,
linf A%, sup(1 — 4T)] > 7= <[inf AT, sup(1 — AP, [inf AL, sup 411, [inf A, sup(1 — 4T)] > then D (1, 1) satisfies the following properties are holds.

5
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1. Dg(x1, 72 is zero iff 7, = 7»-
2. Dp(¥1.7») and Dg(¥,.7,) are co-occur.

3. D71, 73) 2 D71, 72) + Do 13)-
Proof. The proof of Theorem 1 provided in appendix. O

Corollary 2. If any three LSRNSVNs ¥, = ([inf AT,sup(1 — AD)], [inf AL, sup 4'], [inf A%, sup(1 — 4D)]), 7, = <[inf AT, sup(1 — 4D)], [inf A%, sup 41],
linf 45, sup(1 — 4T)] ) = <[inf AT, sup(1 — 45)1,[inf AL, sup 4%, [inf 47, sup(1 — 4T)] > then Dy, (1. 1) satisfies the following conditions.
1. Dy (%1, 7>) is zero iff 71 = 7>

2. Dyp(H 1, 72) =Dy, 70)-
3. DyZ1.73) 2Dy (X1, 72) + Dy (Ha. 73)-

5. Types of aggregation operators

This section examines the advantages of aggregating square root vague sets using logarithmic AOs. Using the square root vague set with the
logarithmic toolset provides a broader modeling methodology for complex phenomena. Adding these operators to the averaging and geometric
operators gives the decision-maker a more comprehensive range of interpretation possibilities. A brief description of some of the families of
logarithmic square root neutrosophic vague weighted averaging (LSRNSVWA), logarithmic square root neutrosophic vague weighted geometric
(LSRNSVWG), logarithmic square root generalized neutrosophic vague weighted averaging (LSRGNSVWA), logarithmic square root generalized
neutrosophic vague weighted geometric (LSRGNSVWG) operators are provided in this section. The main properties of the logarithmic square root
AO are commutativity, idempotency, boundedness, associativity and monotonicity.

5.1. LSRNSVWA operator

Definition 16. Let 7, = <[inf 4T, sup(1 — 47)], [inf AL, sup 471, [inf 47, sup(1 — A}T)J> be the LSRNSVNs, W = (&,.&. ....&,) be the weight of 7,, & > 0
n

n
and /\ & = 1. Then LSRNSVWA (71, 72, .- %) = /\ &%

i=1 i=1

Theorem 3. Let 7, = <[inf AT, sup(1 — AF)], [inf 47, sup A", [inf AF, sup(1 — A}T)]> be the LSRNSVNs. Then LSRN SVW A(Z . %. .- Zn)=

n

(- mrmemy) (- =)

i=1
r

(-t o) (1=t ) |
i=1

i=1

i=1

n
[\/(ng[ inf 475, \/(logy. sup(1 - A?))ff]
i=1 i=1

Proof. The proof of Theorem 3 provided in appendix. O

Theorem 4. If all 7, = <[inf AT, sup(1 — AF)], [inf AL, sup AT][inf AF, sup(1 — A?)])(i 1,2,...,n) are equal, then LSRNSVWA(Z|,Z2,----Zn) =

7 (idempotency property).
Proof. The proof of Theorem 4 provided in appendix. O

Theorem 5. Let 7; = <[ian}£.,sup(1 - A}.j.)],[ian]}j,supA]}/][ian{Fj,sup(l - A}E)]>(i = 1,2,...m:;(j = 1,2,....i;) be the LSRNSVWA, where

— ——

logy, inf AT = inf logy, inf A;ﬂ;, logy, inf AT = sup logy. inf AEE., logy, sup(1 — A" = inf logy, sup(1 — A]S), logy, sup(1 — AF) = sup logy, sup(1 — A]l.l';),
—_———— —_—

— —
logy, inf A" = inf logy, inf A]l.lj, logy, inf Al = sup logy. inf A]ilj, logy, sup A" = inf logy, sup Algj, logy, sup Al = sup logy. sup A]l.lj, logy, inf AF = inf logy, inf A]l.l';,
—_—— ——— ———
— ——
logy, inf A = sup logy inf A]fj, logy, sup(1 — A"y = inf logy, sup(1 — AEE.), logy, sup(1 — ATy = suplogy. sup(1 — A?E).

—_—

————
Then, <[10gyi inf 47, logy sup(1 — 4F)], [logy. inf 4", logy. sup A", [logy inf 4%, logy, sup(l — AT)]>

< LSRNSVW A\, 72 - Zn) < (llogy inf A7, logy, sup(1 — 4)], [logy, inf 4, logy. sup 4"}, [logy inf A%,logy. sup(l — AT)]), where 1 < i < n, j =

—_—— —
L2,...,i; (boundedness property).

Proof. The proof of Theorem 5 provided in appendix. O
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Theorem 6. Lety; = ([infﬂ ,sup(1—AF )], [inf AT ,sup A? ], [inf AE_,SUp(l—A?_)]) and W, = <[ianT ,sup(1—4% )], [inf 4] ,sup 4, 1,[inf 47 ,sup(1—
ij ij ij ij ij ij ij ij ij ij ij
AEU_)]> be the LSRNSVWAs. For any i, if there is \/ (logyl inf A}{j) + \/ (logy‘_ sup(1 —AEI_)) < \/ (10gyi inf AEU) + \/ (10gyi sup(1 —AI;;U)) and

\/(logy inf A,]I ) + \/<logy_ sup Af) < \/(10ng inf AE[ ) + \/(10ng sup AE[ ) and (logy_ inf A]f ) + (logy_ sup(1 —A?,)) > (logy_ inf A]E ) +
i ij i ij i ij i ij i ij i ij i ij

(logyi sup(l —AE,)) or 7, < W, then LSRNSVW A (Z1, 72 ... %) < LSRNSVW A (WI,WZ,...,W,,), where (i = 1,2,...,m;( = 1,2,....i))
(monotonicity pro/perty).

Proof. The proof of Theorem 6 provided in appendix. O
5.2. LSRNSVWG operator

In this subsection, we have studied LSRNSVWG operator and its properties.

n
. e - . . . - - —¢
Definition 17. Let 7, = <[1nf AT, sup(1 — AT)], [inf AL, sup A'], [inf AF, sup(1 — A?)]) be the LSRNSVNs. Then LSRNSVWG (71, 72, --.» 7y) = \/ 7.

Theorem 7. Let 7, = <[inf AT, sup(1 — AT, [inf AF, sup(1 — A?)]) be the LSRNSVNs. Then

n n
[\/(logyi inf 474, \/logy, sup(1 A{F))@],
i=1 i=1

" 2
r

i=1 i=1

(0= ey ) (1= o)) |
L 1 _

i i=1
Proof. Theorem 3 leads to the proof.

Theorem 8. If all 7, = <[inf AT, sup(1 — AF)], [inf AT, sup AT[inf AT, sup(1 — A?)])(i =1,2,...,n) are equal, then LSRNSVWG(Z |, %2 ... . Zn) = 7-

Proof. Theorem 4 leads to the proof.

Remark 1. Boundedness and monotonicity are guaranteed by the LSRNSVWG operator.
Proof. Theorems 5 and 6 leads to the proof.

5.3. LSRGNSVWA operator

Definition 18. Let 7, = <[mf AT sup(1 — AD)], [inf AT, sup AT, [inf AF, sup(1 — A?)]) be the LSRNSVN. Then LSRGNSVWA (¥,.72,...,%n) =
n 1/r

(Nazl) "
i=1

Theorem 9. Let 7, = <[inf AT, sup(1 — AT)], [inf 47, sup A", [inf AF, sup(1 — A}T)]> be the LSRNSVNs. Then LSRGNSVWA (7, %2: -+ %n) =

ar \" 2ar Y]
n [;‘ n f,
<1—V<1—(2\r/(10gyi i“fﬁ?)r)> ) , <1—\/<1—(zr\/(logmsup(l—A]f))r)> > ,
i=1 i=1
" a\’ n a\" r
(1—\/(1—({/(]ogyi ian?)F)) > , (1—\/(1—({/(]0&4 supA]})F)> ) .
i=1 i=1
T or
n 20\
1—<1_ ar V<<1_(1_ 2r/(10gYiian£.F)) > ) > s
- RNy
n m2r &
1-(;_% \/<<1_<1_ 21'/(10gY1 sup(l—A?))) > >
i=1
Proof. The proof of Theorem 9 provided in appendix. O

Remark 2. The LSRGNSVWA operator becomes the LSRNSVWA operator if I' = 1.
Theorem 10. Ifall 7, = <[inf AT, sup(1 — AT, [inf 47, sup AL][inf AF, sup(1 — A}T)J>(i =1,2,...,n) are equal, then LSRGNSVWA(Z |, 72> ---» Zn) = %

7
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End

LSRNSVWA operator
LSRNSVWG
operator
Construct decision Compute LSRGNSVWA
:> values LSRPV => normalize values => operator
LSRGNSVWG
operator
Determine Euclidean i
Rank the Calculate relative distances ﬂ
alternatives closeness values = <
Determine Hamming
C= C= distances Compute aggregate
<= values
Determine Score
ﬂ values

Fig. 1. Graphical representation of the algorithm.

Proof. Theorem 4 leads to the proof.
Remark 3. Boundedness and monotonicity properties of LSRGNSVWA operator are satisfied.

Proof. Theorems 5 and 6 leads to the proof.

5.4. LSRGNSVWG operator

Definition 19. Let 7, = <[inf AT sup(1 — AF)], [inf 47, sup AL, [inf A%, sup(1 — A}T)]> be the LSRNSVNs. Then LSRGNSVWG (7,75, ...

%(\n/(ry,.)ff) (=1.2...n).
i=1

Theorem 11. Let 7, = <[inf AT, sup(1 — AF)], [inf AT, sup A1, [inf AF, sup(l — A}T)]> be the LSRNSVNs. Then LSRGNSVWG(Z |, %3, ... %)=

ar

Si

(= (- ) )Y ) |

i=1

n r 2ar\“ "
1—(_ \/<<1—(1— *y/ (logy, SUP(I—AEF))) > >

i=1

2r |

i=1

n

" g \2T g \2T
<1 -V (1 - ( /(logy, ian{F)f)) > , (1 -V (1 - (  [(logy, sup(1 - A?))f)) >
i=1

i=1

Proof. Theorem 9 leads to the proof.
Remark 4. The LSRGNSVWG operator becomes the LSRNSVWG operator if I' = 1.
Remark 5. It provides boundedness and monotonicity properties, based on the LSRGNSVWG operator.

Proof. Theorems 5 and 6 leads to the proof.

g r
(-G (i) ) {(- Y- (i)' ) |
i=1

r

Theorem 12. Ifdl 7, = <[inf AT, sup(1 — AT, [inf 47, sup AL][inf AF, sup(1 — A}T)J>(i =1,2,...,n) are equal, then LSRGNSVWG(¥ |, Z2s .- Zn) = 7-

8
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6. MADM using to LSRNSV

Let ¥ = {¥|. %2, ---. 7} be the n-alternatives, C = {C|,C,,...,C,} be the m-attributes, w = {£,.¢&,...,¢,} be the weights of attributes,
Ty = <[inf A};, sup(1 — A{Fj)], [inf A]}j, sup A]I.Ij][inf A{.ﬂ, sup(l — Ag )]1) is denote LSRNSVN of alternative 7, in attribute C;.

Since [inf AEE, sup(l—A]iFj)] R [inf A]ilj, sup A],.Ij] R [inf A]g., sup(l—AEE )] €[0,1]and 0 < (logyi sup(l—A]iFj )(0))2+\/(logyi sup A],.Ij (o) + \/(logy[ sup(l — A?})(Q)) <

2, where ¥ =[] (AE, AE{ , A])F(). Here, n-alternative sets and m-attribute sets result in a decision matrix » x m that is indicated by the mathematical
expression D = (%, Fig. 1 shows a flowchat of the algorithm for the MADM process using LSRNSV.

ij )nxm'
6.1. Algorithm
The following are the steps mentioned for solving the MADM problems.

Step-1: Form the LSRNSV choice data.

Step-2: Ascertain the decision values for normalization. Decision matrix D = (¥,;),x, is normalized into D=, Dnxms PUE

Zij= <[logy‘_ inf A;ﬂ;,logyi sup(l — A],.lj.)], [logy, inf A],.Ij,logyi sup A]I.Ij], [logy, inf Ag logy, sup(l — AE)]>

and logy inf A?; = logy, inf A;ﬂ;,logyi sup(l — A]‘.Fj) = logy, sup(l — AE.), where Y =[] (AE,AHI,AH‘/;).

Step-3: Calculate the both ideal values for each alternative as

77 = <[1, 11,11, 1],[0,01>7” = <[0,01,[0,01,[1, 1]>.

Step-4: Based on the two ideal values, calculate the ED between each option:

Df =D (77" ) DY =D (7, 7").

DN
. 3 * i
Step-5: Relative closeness are calculated as D} = SPADN

Step-6: The output is supD}. So, choosing the optimal action to take for a particular problem is a decision.
6.2. Artificial intelligence selection

Robots including service robots are becoming increasingly prevalent in society. The robots of the future will be able to manipulate objects
in our daily lives with reliability, but only if they are paired with artificial intelligence techniques for planning and DM, which will allow them
to comprehend how they can accomplish a particular task. Al systems are software (and perhaps also hardware) systems designed by humans
to perform complex tasks by acquiring data about their environment in a physical or digital dimension in response to a complex goal. An Al
system interprets the collected structured and unstructured data, interprets the knowledge, or processes the information derived from this data,
and determines what action(s) to take in order to accomplish the given task. By analyzing how their decisions affect the environment, Al systems
can adapt their behavior, using symbolic rules or learning numeric models. Al can be used in computer systems, which can use the knowledge it has
learned to process new inputs. It is a mathematical and algorithmic skill that can only be applied to tasks that have been trained by the system. To
better understand the concept of Al, picture a chatbot, whose job is to help dinners make reservations at restaurants. Developed to answer inquiries
regarding table reservations, this chatbot is a computer program. By doing this, it determines how the subject is talking in general. When the chatbot
has been trained, it is capable of conversing with users. As a result, the chatbot cannot assist a customer if they ask about food recommendations
when they depart from the intended topic of reserving a table. Some of the existing autonomous robots can be possibly implemented in shipment
delivery. Further improvements and modes of artificially intelligent last-mile delivery robots are described in the following text as considered
alternatives. We offer a classification to help you decide how AI can be applied practically. Each type of AI will be briefly described, along with
the most important business use cases and examples. Currently, we have selected five types of artificial intelligence robotics at random such as
Analytic Al 7, Functional Al 7,, Visual Al 73, Interactive Al 77, and Text Al 7s.

1. Analytic Al 7,: Using analytic Al, data analysis can be automated, which reduces time and labor costs. Al is increasingly capable of analyzing
unstructured data sources, such as unstructured speech, images, and videos, via analytic Al tools such as NLP. Al systems have multiple
advantages when it comes to analyzing data autonomously. There are many reasons for this, but the most important one is to reduce the
labor cost of highly paid and highly available analytic Al professionals. Additionally, analytic Al can be used in the following ways: (i) Risk
management can be improved with analytic Al, which can lead to smarter strategies and increased effectiveness. (ii) Innovative products to
create new products and improve existing ones, analytic Al can analyze big data. (iii) Turbocharged supply chain is data-driven knowledge
can be tapped into to solve previously unsolvable problems through analytic Al (iv) Customer engagement is a analytic Al can be used
to identify what customers want and acquire, retain and cultivate them. (v) Successful marketing campaigns is analyzing current customer
purchases. The analytic Al can be used to targeted and focused campaigns.

2. Functional Al 7,: Functional AI works in a similar manner to analytic Al in that it scans large amounts of data in order to search for patterns
and dependencies between the data that it scans. Rather than giving recommendations, functional Al is designed to take action, it is not
intended to make recommendations. Using its connectivity to the IoT cloud, the system is able to detect the patterns of breakdowns in a
certain machine by using sensor data from the machine in question and turn the system off automatically as soon as it detects a breakdown.
Secondly, we can take a look at the robots that are being used by Amazon to move shelves that contain goods to pickers, thereby speeding
up the picking process.
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Table 1
DM values.
CI CZ (CB (C-/J
7 (105,0.55], (105,0.65], ( 10.6,0.65], ( 10.65,0.8],
[0.4,0.45],[0.45,0.5] ) [0.3,0.45],[0.35,0.5] ) [0.4,0.45],[0.35,0.4] ) [0.25,0.5],0.2,035] )
T2 ([04,0.5], (10.7,0.78], ( 10.5,0.68], ( 10.75,0.85],
[0.6,0.64],[0.5,0.6] ) [0.65.0.7],[0.22,0.3] ) [0.4,0.5],[0.32,0.5] ) [0.45,0.55],[0.15,0.25] )
73 (102,021, ( 10.69,0.75), (10.45,0.55), (10.85,0.9],
[0.7,0.75],[0.79.0.8] ) [0.5,0.55],[0.25,0.31] ) [0.5,0.55],[0.45,0.55] ) [0.35,0.45],[0.1,0.15] )
T4 ( 10.45,0.49], ( 10.85,0.97], ( 10.65,0.8], (10.8,0.9],
[0.2,0.27],[0.51,0.55] ) [0.5,0.55],[0.03,0.15] ) [0.35,0.4],[0.2,035] ) [0.4,0.51,{0.1,0.2] )
s (10.4,0.42], (10.7,0.8], ( [0.45,0.75], (10.7,0.8],

[0.5,0.55],[0.58,0.6] ) [0.45,0.551,[0.2,0.3] ) [0.3,0.45],[0.25,0.55] ) [0.5,0.55],0.2,0.3] )

Table 2

Y values.
[0.0975,0.1859] [0.0120,0.0456] [0.0110,0.0350]
[0.1050,0.2254] [0.0702,0.1232] [0.0053,0.0225]
[0.0528,0.0780] [0.0613,0.1021] [0.0089, 0.0205]

[0.1989,0.3422]
[0.0882,0.2016]

[0.0140,0.0297]
[0.0338,0.0749]

[0.0003,0.0058]
[0.0058,0.0297]

Table 3
LSRNSVWA values.

LSRN SVW A operator (I' = 1)

{ [0.2652,0.2723),[0.2438, 0.2535],[0.2256,0.2327] )
( 10.2712,0.2838], [0.2336,0.2372],[0.2147,0.215] )
{ [0.2983,0.3143],[0.2299,0.2318],[0.1526,0.1584] )
{ [0.2807,0.3158], [0.2677,0.2682], [0.1954,0.213] )
{ [0.2641,0.2966], [0.2463, 0.2468],[0.2076, 0.2205] )

)

Il el xd

o

3. Interactive Al 7;: Businesses can automate communication using this type of AI while still maintaining a high level of interaction. A chatbots

or smart personal assistants are common example of this type of Al, which can answer pre-built questions and comprehend context of a
conversation. A company can also benefit from interactive Al by improving the internal processes in the organization. A recent project that
we worked on was developing a chatbot to facilitate vacation bookings for corporate clients.

. Text Al 7,: Text Al can allow businesses to recognize text, convert speech into text, translate texts, and generate content. This type of Al can

still be used by companies even if they are not Google or Amazon. Text Al can be used, for instance, to power internal corporate knowledge
bases. Using Al-powered knowledge bases, you can find relevant documents regardless of their keywords: the knowledge base can even
find documents without keywords. Al can build semantic maps and recognize synonyms by using semantic search and natural language
processing.

. Visual AI 75: With the help of visual artificial intelligence, businesses can identify, recognize, classify, and sort objects based on their

appearance and also gain insights from their images and videos. A computer system is used by insurance companies in order to estimate
the amount of damage caused by damaged cars, and machines can grade apples based on their color and their size according to computer
programs. This type of artificial intelligence can be seen in the fields of computer vision and augmented reality. In this example, we will
show you how we developed a face recognition solution for a retailer to enhance and personalize customer service so that you are able to see
for yourself how visual AI can be valuable for retailers. A further application we developed was an application for automatically inspecting
the quality of the details manufactured by manufacturers, enabling them to control the quality of the products at any time.

There are four main factors to consider when selecting Als are “operating processes” (C;), “costs” (C,), “time” (C3) and “externalities” (C,).
Corresponding weights are w = {0.4,0.3,0.2,0.1}. The objective of this process is to evaluate the options and select the best by evaluating them
against the criteria.

Table 1 represents the DM values.

Table 2 represents the Y values Y =[] (AE, Ag{ , A])F(
The Table 3 shows that the information for each ¢

2oice with the LSRNSVWG operator:

Determine the optimum values of the following alternatives are 7 = (.1,1,0) and 7= {0,0,1).

The following table displays the ED for each option under the positive and negative ideal values: ]D)lP = 0.3282, IDJf = 0.3345, ]D>§' = 0.3502,
DF =0.3369, DP = 0.3338 and DY = 0.022, DY = 0.0283, DY = 0.044, DY = 0.0307, DY = 0.0276.

4

The values of relative nearness are as follows. D} = 0.0629, D} = 0.0779, ]D)_; =0.1116, D} = 0.0836, D;‘ =0.0763.

Ranking of alternatives are 73 > 74 > 7> = 75 = X1-

Consequently, the Interactive Al 75 is best.

6.3. Comparison for proposed and some existing methods

In addition to applying fuzzy information measures to MADM, pattern recognition, clustering analysis, and picture segmentation, fuzzy

information measures can also be used in pattern recognition. The results of both activities are sometimes the same. As a result, the results may
vary. A fuzzy entropy metric or fuzzy knowledge metric may be used in a MADM situation to rank alternatives. To demonstrate their advantages
and applicability, we compare our models with some existing ones. A comparison was conducted between several existing models and the proposed

10
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Table 4
Different distances.
=1 TOPSIS — Euclidean TOPSIS — Hamming
distance (proposed) distance (proposed)
LSRNSVW A T3z Xz X =75 = 7 T3 Z X Z T2 =75 = 70
Table 5
Existing different distances.
r=1 TOPSIS — Euclidean TOPSIS — Hamming
distance distance
PNSIVWA (Palanikumar et al., 2022) T3Z Xz 72275 =271 Z3Z X Z T2 2 X5 =27
Log qVWA (Palanikumar et al., 2024) T Z T =X =X =73 TNZ T ZTs =T =T
Table 6
LSRNSVWA values.
LSRN SVW A operator (I' =2)
7 < [0.2646,0.2706], [0.2426, 0.2534], [0.2256, 0.2327] )
72 < [0.2672,0.2782],[0.2299, 0.2346], [0.2147,0.215] )
s ( 10.2866,0.298], [0.2244,0.2266], [0.1526,0.1584] )
74 < [0.2723,0.29], [0.2626, 0.2635],[0.1954,0.213] )
7s < [0.2606, 0.2878], [0.2442, 0.2462], [0.2076, 0.2205] )

LSRNSVWA-different approaches

M Alternative-| ® Alternative-ll m Alternative-lll m Alternative-IlV m Alternative-V
0.11

0.11

LSRNSVWA-first approach LSRNSVWA-second approach

Fig. 2. EDs of different approaches using LSRNSVWA.

ones. Due to its value and advantages, it proves to be beneficial. Palanikumar et al. (2022) discusses the development of a new type of NSS with
normal AOs. As a result of the facts outlined above, we utilize the LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG approaches. There
are different distances as follows:

Table 4 shows that different AOs based on ED and HD. Table 5 shows that different AOs for interval valued Pythagorean normal weighted
averaging, interval valued Pythagorean normal weighted geometric, generalized interval valued Pythagorean normal weighted averaging and
generalized interval valued Pythagorean normal weighted geometric (Palanikumar et al., 2022).

6.4. Data analysis

MADM approaches are more reliable in certain circumstances than in others. There is a list of prerequisites for the tests. Based on different I"
values, the LSRNSVWA method calculates closeness values and rankings as follows. Adjust the I" = 2 setting for the LSRNSVWA approaches. Orders
and values of relative proximity are as follows:

Table 6 shows that for each choice with the LSRNSVWA operator: The positive and negative ideal values such as 7P = ([1, 11,11, 11, [0, 0]) and
7" = (10,01.10,01,[1, 11).

The following table shows the ED between every choice using the both ideal values: D = 0.328, DI = 0.3336, ]D)f = 03477, DY = 03332,
D! =0.3323 and DV =0.0218, D) = 0.0275, DY = 0.0415, DY = 0.027, DY = 0.0261.

The relative nearness values are D} = 0.0624, D} = 0.076, ]D)3* = 0.1066, D} = 0.0751, ]DS* =0.0729.

As can be seen from the data above, the alternate ranking is determined using the LSRNSVWA operator. If I" = 2, the ranking of the alternatives
in a new order is 73 > 7, > 74 > 75 = 7. As a result, 7, becomes the preferred option to 7,. The basis for alternative rankings is the I" operators
LSRNSVWG, LSRGNSVWA, and LSRGNSVWG.

Fig. 2 shows different EDs using LSRNSVWA.

11
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6.5. Advantages

This paper discusses the proposed concept in terms of its advantages and benefits. It is a generalized form of the square root aggregating operator
based on VS. By reducing the square of truth membership, the root of indeterminacy membership, and the root of false membership to one, LSRNSVS
becomes a square root operator based on VS. Several new square root operators are introduced, including LSRNSVWA, LSRNSVWG, LSRNSGVWA,
and LSRNSGVWG. One of the main advantages of this method is the ability to objectively and subjectively assess DM procedures using several
experts. A robotic selection can be characterized as an uncertain series of steps and procedures, which makes it an exciting topic for analysis. Using
the illustrative example, several options and alternatives depend on the complex attitudinal characteristics of decision-makers among an ideal set
of characteristics, thereby making it possible to compare the available options and choices. An essential component of this method is a square root
weighted operator derived from the weighted aggregating model. In other words, it exhibits the same properties. Its characteristics are extended to
consider a broader range of complex problems as the primary motivation. Among the main advantages of square root weighted operators are that
they introduce distance measures, namely HDs and EDs, which can be used to compare an optimal set of preferences with alternatives or options
chosen by decision-makers.

6.6. Comparison analysis

This method is effective because it considers the relationships between different attributes. Thus, the proposed method is better ranking results.
Therefore, this method is more efficient than in Palanikumar et al. (2022) and Palanikumar et al. (2024). In this study, ED and HD were established
for LSRNSVS. ED and HD were compared to demonstrate their superiority. We introduced a new concept of ED and HD for LSRNSVS, which were
presented in a simple mathematical form. This represents an advantage in actual calculations. Consequently, a numerical example illustrated the
superiority of the ED and HD when these two factors were considered. After that, all of the alternatives were ranked and the best option was
chosen. As a result, Interactive Al 7; was the best alternative. Tables 4 and 5 compared the proposed method with the existing approaches. As
discussed above, the proposed method appeared to be more general and accurate than some existing approaches. Thus, it can be used to design
intelligent systems for image recognition and other real-world applications.

7. Conclusion

We presented both ED and HD for LSRNSVSs. The mathematical simplicity of these distance measures made them advantageous. A numerical
example illustrated the superiority of ED and HD. It was demonstrated that both ED and HD are applicable. The rules for aggregation operations
have been proposed for LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG. As well as providing some examples, we discussed some of
the features of these operators. By using the LSRNSV multi-attribute decision-making technique, it was possible to select the best course of action
from multiple options when uncertain and inconsistent conditions exist. The LSRNSVWA, LSRNSVWG, LSRGNSVWA, and LSRGNSVWG operators
were applied to MADM issues based on I'. It was possible to discover the distinct ordering of alternatives by using the LSRNSVWA, LSRNSVWG,
LSRGNSVWA, and LSRGNSVWG operators. As a result of the study presented above, I' had the greatest influence over alternative rankings. By
setting I" according to the actual scenario, the decision-makers might arrive at the most reasonable ranking. A number of practical uses could be
made of the ED and HD measures.

A method for handling MADM problems with uncertainty in the form of vague information was developed to demonstrate the effectiveness and
consistency of the suggested square root AOs. A real-life example is provided to assess and demonstrate the applicability of our proposed method.
The recommended aggregation methods were tested using the existing tools to prove their superiority and validity. The proposed AO is more
reliable and accurate than the existing method. The square root AO, which we suggest for the MADM problem, is a novel method for identifying
the best alternative. The aggregating operator uses distance measures, such as EDs and HDs, to consider an optimal set of preferences. Generalized
aggregating operators provide a parameterized family of distance AOs useful for DM. Consequently, the results may lead to different decisions
depending on the case.

The proposed model can solve several real-life problems, such as Al in education, health care, business, manufacturing, roads, machine learning,
game theory, and computer science. Our proposed technique for determining the best option in MADM, the square root AO, provides a novel
approach. This methodology has a wide range of potential applications. For example, could be also used in studies on green supplier selection,
industrial strategies, risk assessment, predictive maintenance, as well as other innovative DM domains.
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The proof of Theorem 3. It was proved using mathematical induction.
If n =2, then LSRNSVWA(Z |, 7,) = & 71 /\ &7, where
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