GE 403
 Engineering Economy

Eng. Howaidi Alotaibi
Civil Engineering Department
E-mail halshaibani@ksu.edu.sa

Multiple Compounding Periods

Ex. 1 Ali wishes to make a single deposit p at $\mathrm{t}=0$ into a fund paying 15% per year compounded quarterly such that $\$ 1000$ payments are received at $t=1,2,3$ and 4 (periods are 3 month intervals), and a single payment of $\$ 7500$ is received at $\mathrm{t}=12$. What single deposit is required?

Solution

$$
\begin{aligned}
& r=15 \% \text { per year compounded quarterly } \\
& r=15 \% \text { compounded quarterly } \\
& r=15 \% \text { per year per quarter }
\end{aligned}
$$

Let \boldsymbol{r} denote the nominal annual interest rate for money and m denote the number of compounding periods in a year

$$
i=r / m \quad \Longrightarrow \quad i=0.15 / 4 \times 100=3.75 \% \text { per quarter }
$$

$$
P=A\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]+F(1+i)^{n}
$$

$$
P=1000\left[\frac{(1+0.0375)^{4}-1}{0.0375(1+0.0375)^{4}}\right]+7500(1+0.0375)^{-12}=\$ 8473.12
$$

Ex. 2 If $\$ 10,000$ is invested in a fund that pays interest at a rate of 16% per year compounded monthly, after 4 years how much will be in the fund?

Solution

First Solution

Effective annual interest rate

$I_{e f f}=\left[(1+r / m)^{m}-1\right] \times 100$
\$10,000
$I_{\text {eff }}=\left[(1+0.16 / 12)^{12}-1\right] \times 100=17.227 \%$ per year compounded annually
$F=P(1+i)^{n}=10,000(1+0.1723)^{4}=\$ 18,884.77$

Ex. 2 If $\$ 10,000$ is invested in a fund that pays interest at a rate of 16% per year compounded monthly, after 4 years how much will be in the fund?

Solution

Second Solution

Monthly interest rate

$i=r / m \Rightarrow 0.16 / 12 \times 100=1.333 \%$ per month

$$
F=P(1+i)^{n}=10,000(1+0.01333)^{48}=\$ 18,884.77
$$

Ex. 3 If $\$ 10,000$ is invested in a fund that pays interest at a rate of 1% per month, after 4 years how much will be in the fund?

Solution

First Solution

Effective annual interest rate

$$
I_{e f f}=\left[(1+r / m)^{m}-1\right] \times 100
$$

$$
\$ 10,000
$$

$I_{e f f}=\left[(1+0.01)^{12}-1\right] \times 100=12.683 \%$ per year compounded annually

$$
F=P(1+i)^{n}=10,000(1+0.12683)^{4}=\$ 16,122.55
$$

Ex. 3 If $\$ 10,000$ is invested in a fund that pays interest at a rate of 1% per month, after 4 years how much will be in the fund?

Solution

Second Solution

Monthly interest rate

$i=r / m \Rightarrow 1 \%$ per month

$$
F=P(1+i)^{n}=10,000(1+0.01)^{48}=\$ 16,122.26
$$

Ex. 4 Saad borrowed $\$ 30,000$ to buy a car; he will pay the loan with 10 equal monthly payments at a rate of 25% per year per quarter. Determine the loan monthly payments.

$I_{K}=\left[(1+r / m)^{m / k}-1\right] \times 100$
$I_{\text {monthly }}=\left[(1+0.25 / 4)^{4 / 12}-1\right] \times 100=2 \%$ per month
$A=P(A / P 2 \%, 10)=30,000(0.11133)=\$ 3339.9$

