Topic 1. General Probability

SAMPLE SPACESAND EVENTS

Sample point and sample space: A sample point is the ssmple outcome of arandom
experiment. The sample spaceis the collection of all sample points related to a specified
experiment.

Mutually exclusive outcomes: Outcomes are mutually exclusive if they cannot occur
simultaneously. They are also referred to as digjoint outcomes.

Exhaustive outcomes: Outcomes are exhaustive if they combine to be the entire sample
space, or equivalently, if at least one of the outcomes must occur whenever the
experiment is performed.

Event: Any collection of sample points, or any subset of the sample spaceisreferred to
asan event.

Union of events A and B: A U B denotes the union of events A and B, and consists of
al sample pointsthat arein either A or B.

Union of events A, A,, ..., A, AiUAU---UA, :igl A; denotes the union of
theevents A,, A,, ..., A, , and consists of all sample pointsthat arein at least one of the A;'s.
This definition can be extended to the union of infinitely many events.

n
Intersection of events A;, Ay, ..., A, AiNAN---NA, :,ﬂl A; denotesthe
=

intersection of theevents A, A,, ..., A, , and consists of all aampTe points that are
simultaneously in al of the A;'s. AN B isasodenoted A- B or AB.

Mutually exclusive events A1, Az, ..., An: Two events are mutually exclusive if they

have no sample pointsin common, or equivalently, if they have empty intersection. Events
Ay, Ay, .. A, aremutually exclusiveif A; N A; =0 forall i # j, where () denotes the empty
set with no sample points.

Exhaustiveevents By, B, ..., B,: If BiUB,U---U B, = S, the entire sample space, then
theevents By, B,, ..., B, arereferred to as exhaustive events.



Complement of event A: The complement of event A consists of all sample pointsin
the sample space that are not in A. The complement isdenoted A, ~ A, A’ or A¢ andis
equal to {z:xz ¢ A}.

Subevent (or subset) A of event B: If event B contains all the sample pointsin event
A, then A isasubevent of B, denoted A C B. The occurrence of event A impliesthat event B
has occurred.

Partition of event A: Events Cy, (s, ..., C, formapartitionof event Aif A= U C;
and the C;'s are mutually exclusive. =1
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Indicator function for event A: Thefunction I,(z) = _— isthe indicator

: : 0 if
function for event A, where = denotes a sample point. "

Example 1. Suppose that an "experiment” consists of tossing a six-faced die. The sample space
of outcomes consists of the set {1, 2, 3, 4,5, 6}, each number being a sample point representing
the number of spots that can turn up when the dieistossed. The outcomes 1 and 2 (or more
formally, {1} and {2}) are mutually exclusive when tossing adie. The outcomes (sample
points) 1 to 6 are exhaustive for the experiment of tossing adie. The collection {2,4,6}
represents the event of tossing an even number when tossing adie. If A ={1,2,3} and

B ={2,4,6} then AUB ={1,2,3,4,6} and AN B = {2} . Theevents A = "anumber
lessthan 4 istossed” = {1, 2,3} and

C ="adistossed" = {4} are mutually exclusivesince they have no sample pointsin common
-ANC =0. If A=1{1,2,3},then A" = {4,5,6}.

If D="a2istossed" = {2} and B = "aneven numberistossed" = {2,4,6},then D C B.
Theevents £ ="a2or4istossed" = {2,4} and F' ="ab6istossed" = {6} formapartition
of the event B = "an even number istossed" = {2,4,6}. For the die-tossing experiment, if
A={1,2,3} and B={2,4,6} ,then A’ = {4,5,6} and B’ = {1,3,5}, and
AUB=1{1,2,3,4,6} ,0that (AUB) ={5} =A'NB. O



Some rules concer ning oper ations on events:

() AN(BiUByU---UB,)=(ANB)U(ANBy)U---U (AN B,) and
AU(B NB,N---NB,)=(AUB;)N(AUBy)N---N (AU B,) for any events
AvBluB27"'7Bn
(i) If By, Bs,..., B, areexhaustive events( QJ lBi = S, the entire sample space),
thenforanyevent A, A= AN (B, UB%U ~--UB,) . Asaspecial case of this, for any
eventsAand B, AN(BUB')=(ANB)U(ANB')=A,sothat AnB and
AN B form apartition of event A
(iii) Foranyevent A, AU A’ = S, theentire sample space,and AN A’ = ()

(iv) AnB' ={z:z€ Aandz ¢ B} issometimesdenoted A — B, and consists of
all sample pointsthat arein event A but not in event B

(V) If ACcBthen AUB=Band ANB=A.



PROBABILITY

Probability function: P[a;] or p; denotesthe probability that sample point (or outcome) a;
occurs, P must satisfy the following two conditions:

(i) 0 < Pla;) <1 for each a; inthe sample space, and

(i) Pla] + Plas] + -+ =>_Pla;] = 1; thisdefinition applies to both finite and

infinite sample spaces,

Uniform probability function: If asample space has afinite number of sample points, say k
points- ap,as, ..., a; , then the probability function is said to be uniform if each sample point
has the same probability of occurring - Pla;] = % foreach i =1,2,...,k.

Probability of event A: P[A] = > Pla;] , the sum of P[a;] over al sample pointsin event A.

a; €A

Example2: Intossing a"fair" die, it isassumed that each of the six faces has the same chance
of % of turning up. If thisistrue, then the probability function P(j) = % for j=1,2,3,4,5,6
is a uniform probability function on the sample space {1, 2, 3,4,5,6}.

The event "an even number istossed" is A = {2, 4,6}, and has probability
PAl=g+5+5=5. O

Some rules concer ning oper ations on events:

(i) P[0] =0
(i) P[S] =1 if S istheentire sample space

(i) if events Ay, A, ..., A, aremutually exclusive then
Pl U (Al = PlAUA U UA] = PIA]+ PlA] + -+ PlA] = Y PA);
1 = .

this extends to infinitely many mutually exclusive events
(iv) foranyevent A, 0 < P[A] <1

(v) if AC B then P[A] < P[B]




(vi) foranyevents A, Band C, P[AU B] = P[A] + P[B] — P[An B] (since
P[A] + P[B] counts P[AN B] twice), and
P[AUBUC|= P[A]+ P[B]+ P[C] - P[ANnB] - P[AnC]|-P[BNC|+P[ANBNC] ;

n

(vii) forany events A, Ay, ..., A, , P] ¥ A;] <> P[A;], with equality holding if
i=1 i=1
and only if the events are mutually exclusive ;

(viii) forany event A, P[A’] =1 — P[A];

(ix) forany events A and B, P[A] = P[AN B]+ P[AN B|;

(x) for exhaustiveevents By, Bs, ..., B, , P| ‘@1 Bil=1,
if By, B, ..., B, areexhaustive and mutually exclusive, they form apartition of the
entire sample space, and for any event A,

P[A] = P[AN By] + P[AQ By] + -+ P[AN B,] = Y PIAN B}]

=1

(xi) if P isauniform probability function on a sample space with & points, and if event

m

A condists of m sample points, then P[A] = 7

Example 3: A survey is made to determine the number of households having electric appliances
inacertain city. It isfound that 75% have radios (R), 65% have irons (1), 55% have electric
toasters (7'), 50% have (I R), 40% have (RT), 30% have (IT'), and 20% have al three. Find the
probability that a household has at least one of these appliances.

Solution:
P[RUIUT])=P[R]+ P[I]+ P[T] - P[RNI|—P[RNT)—-P[INT|+ P[RNINT)
=75+ .65+55—-—5—4—-—3+.2=.95 O

Example4: Let P[ANB]= .2, P[A]= .6, and P[B] =.5. Find P[A"UDB'].
Solution: P[A'UB'| = P[(ANB)]=1—-P[ANB]=.8. O



CONDITIONAL PROBABILITY AND INDEPENDENCE OF EVENTS

Conditional probability of event B given event A: If P[A] > 0, we define
P[B‘A] _  P[BNnA]
P[A]
the conditional probability that event B occurs given that event A has occurred.

Bayesrule and Bayes Theorem: For any events A and B with P[A] > 0,

P[B|A] = 71)[%%[3]

If B, B»,..., B, formapartition of the entire sample space .S, then
P[Bj|A] = LABIPIB]  foreach j=1,2,..,n
Z;P[AIB[-]P[BJ
Thevalues of P[B)) are called prior probabilities, and the value of P[B; | A] is called a posterior probability.

Independent events A and B: If events A and B satisfy the relationship

P[AN B] = P[A] - P[B], then the events are said to be independent or stochastically
independent or statistically independent. The independence of (non-empty) events A and B is
equivalentto P[A|B] = P[A] or P[B|A] = P[B].

Mutually independent events A, A,, ..., A,: If events A, A, ..., A, satisfy the relationship
Pl[A NAy NN A,] = P[A] - P[Ay]---P[A,] = [[ P[Ai]
i=1

then, eventsare said to be mutually independent.

Example 5: Suppose the die-tossing experiment is considered again. The sample spaceis
S =1{1,2,3,4,5,6}. Wedefinethe following events:

A = "the number tossed is < 3" = {1, 2, 3}

B = "the number tossed iseven”" = {2,4,6}

C = "the number tossed isa 1 or a2" = {1, 2}

D = "the number tossed doesn't start with the letters 'f' or 't" = {1,6}

The conditional probability of A given Bis P[A|B] = P[{lﬁ[,{32}2{62},]4,6}] = P@{i}é}] = 1//—3 = 31 .

Events A and B are not independent, since ¢ = P[ANB] # P[A]-P[B] =5 -5 = 1,

or aternatively, events A and B are not independent since P[A|B] # P[A].
P[A|C] =1+ & = P[A], sothat A and C' are not independent.
P[B|C] = % = P|[B], sothat B and C' are independent

(aternatively, P[BNC] = P[{2}] = ¢ = 5 - 5 = P[B] - P[C]).

Both A and B are independent of D. O



Some rules concer ning conditional probability and independence are:

(i) P[An B] = P[B|A]- P[A] = P[A|B] - P|B] for any independent events 4 and B
@it) If By, Bs,..., B, form apartition of the sample space S, then for any event A,
P[A] = ’;P[A|Bi] - P[By];
asaspecia case, for any events A and B, P[A] = P[A|B] - P[B] + P[A|B'] - P|B']

(ii) If P[A,NAyN---NA,] >0, then

(iv) P[A|B] = 1 — P[A|B]

(v) it Ac B then PlAIB] = “5fl = Th and P[BlA] =1

(vi) if Aand B areindependent eventsthen A’ and B are independent events,
Aand B’ areindependent events, and A’ and B’ are independent events

(vii) since P[0] = P[0 n A] =0 = P[] - P[A] for any event A, it followsthat () is
independent of any event A

IMPORTANT NOTE: The following manipulation of event probabilities arises from timeto
time: P[B] = P[B|A] - P(A) + P[B|A] - P(A) . If weare given conditional probabilities for
event B given some other event A and its complement A, and if we are given the (unconditional)
probability of event A, then we can find the probability of event B. One of the important aspects
of applying this relationship is the determination of the appropriate events A and B.

Example6: If P[A] =1 and P[B] = 3, and P[A|B]+ P[B|A] = &, find P[AN B].

Solution: P[BA] = Z55P = 6P(AN B] and PlaB) = T35l = 2PlanB)
- (6+2)-PlANB]= & » P[ANBl=% . O

Example 7: Three dice have the following probabilities of throwing a“six™: p,q,r,
respectively. One of the diceis chosen at random and thrown (each is equally likely to be
chosen). A "six" appeared. What is the probability that the die chosen was the first one?

Solution: Theevent " a6 isthrown" is denoted by "6"

Pl(dieD)n("6")] _ P["6"|die1]-P[diel] _ p:
Pr6 ] Pr67] = Pl

O eol—

P[diel|"6"] = T




But P['6"] = P[("6") N (diel)] + P[("6") N (die2)] + P[("6") N (die3)]

= P['6"|diel] - P[diel] + P["6"|die2] - P[die2] + P["6"|die3] - P[die3]
1 1
_ 1 1 1 _ p+q+7' H non) P3 . p3 —_ p
= pgtagtrog="g o Pldel]'6"] = pry = (p+q+3r)-§ - phgtr

Example 8: ldentical twins come from the same egg and hence are of the same sex. Fraternal
twins have a 50-50 chance of being the same sex. Among twins, the probability of afraternal set
ispand anidentical setis ¢ = 1 — p. If the next set of twins are of the same sex, what isthe
probability that they are identical?

Solution: Let A bethe event "the next set of twins are of the same sex", and let B be the event

"the next sets of twins areidentical”. We are given

PIAIB] =1, PIAIB] =5, P[B]=q , P[B]=p=1-q. Then P[B|4] =507

But
P[ANB] = P[A|B]-P[Bl=q and P[ANDB|= P[A|B]-P[B]=.5p.
Thus, P[A] = P[ANB]+ P[ANB|=q+ .5p=q+ .5(1 —¢q) =.5(1+¢),and

P[B|A] = 55t - O

Example 9: Let events A and B be independent. Find the probability, in terms of P[A] and
P[B], that exactly one of the events A and B occurs.

Solution: Plexactlyoneof Aand B] = P[(ANB)U (BN A")].
Since ANB and BN A’ aremutually exclusive, it follows that
Plexactlyoneof Aand B = P[ANB'|+ P[BN A’] .
Since A and B are independent, it follows that A and B’ are also independent, asare B and A’. Then
P[(ANnB)U(BNA")] = P[A]- P[B]+ P[B] - P[A]
= P[A](1 — P[B]) + P[B|(1 — P[A]) = P[A] + P|B] — 2P[A] - P[B|O



COMBINATORIAL PRINCIPLES - PERMUTATIONSAND COMBINATIONS

Factorial notation: n! denotes the quantity
n!=nn-1)(Mn-2)--2-1; 0! isdefined to be equal to 1.
Permutations:

(@) Givenn distinct objects, the number of different ways in which the objects may be ordered
(permuted) isn!. For example, the set of 3 letters {a,b,c} canbeorderedin 3! =6 ways-
abc, acb, bac, bca, cab, cba .

The number of ways of choosing an ordered subset of size & from n objects, without replacement
(i.e., after the first object is chosen, the next object is chosen from the remaining n — 1, the next
after that from theremaining n — 2, etc.) is

n!

el = (n—1)---«(n—k+1),andisdenoted , P, or P,; or P(n,k).

Using the set {a, b, ¢} again, the number of ways of choosing an ordered subset of size2 is

%2%26- ab, ac, ba, bc, ca,ch.

(b) Givenn objects, of which n, areof Type1l, n, areof Type2,...,and n; areof Typet
(t > lisaninteger), and n = n; + ny + --- + n; , the number of ways of ordering al n objects
(where objects of the same Type are indistinguishable) is

n! which is sometimes denoted ( . )

nylnol--ngd nyng -
Combinations:
(@) Given n distinct objects, the number of ways of choosing a subset of size k£ < n without
replacement (and without regard to the order in which the objects are chosen) is
#’_k), , whichisusually denoted (;)(or ,Cy , Gy or C(n,k)) andisread
"n choose £". (’Z) isalso caled abinomial coefficient (and can be defined for any real number

n and non-negative integer k). Notethat if » isan integer and k is a non-negative integer, then

() = Mothnbl) (= (=1, () = (") =n.ad (1) = (")

Using the set {a, b, ¢} again, the number of ways of choosing a subset of size 2 without
replacement is (g) = 72!_(5’!_2)! = 3 - thesebeing {a,b},{a,c}, {b,c}.

(b) Givenn objects, of which n, areof Type 1, n, areof Type 2, ..., and n; are of Typet
(t > lisaninteger), and n = ny; + ny + --- + n; , the number of ways of
choosing asubset of size & < n (without replacement). with %, objects of Type 1, k-, objects of
Type2,..., and k; objectsof Typet,where k =k + ky +--- + k; IS

ny N9y ¢
(i) - (i) (x)
Binomial Theorem: In the power series expansion of (1 + t)", the coefficient of ¢* is

(JZ),sothat (1+t)N:1;)(JZ> ‘tkzl_i_Nt_'_N(Jgfl)tz_i_N(Nfl(s)(N—Z) T
; 9




If NV isaninteger, then the summation stopsat £ = N and the seriesisvalid for any rea number
t, but if N isnot an integer, then the seriesisvalidif |¢| < 1.

Multinomial Theorem: In the power series expansion of (¢, +t, +--- +t,)" where N isa
positive integer, the coefficient of ¢%* - t52...th (where ky + ky + --- 4+ k, = N) is

N N
Fey kg o ky ) T Fplheal -kl

Special note: In questionsinvolving coin flips or dice tossing, it is understood, unless indicated
otherwise, that successive flips or tosses are independent of one another.

In making a random selection of an object from a collection of n objects, it is understood that
each object has the same chance of being chosen, % . In questions that arise involving choosing &
objects at random from atotal of n objects, or in constructing a random permutation of a
collection of objects, it is understood that each of the possible choices or permutationsis equally

likely to occur. For instance, if a purse contains one quarter, one dime, one nickel and one

4
2

without regard to order of choosing - theseare Q-D, Q-N, Q-P, D-N, D-P, N-P (the
choice Q-D isregarded as the same as D-Q, etc.). It would be understood that each of the
possible ways are equally likely, and each has (uniform) probability of % of occurring - thed

penny, and two coins are chosen, there are ( ) = 6 possible ways of choosing two coins

sample space would consist of the ways of choosing, and each sample point would have
probability % . Then, the probabilify of a particular event occurring would be J , Where j isthe
number of sample pointsin the event. If A isthe event "one of the coinsis either aquarter or a
dime", then P[A] = % , since event A consists of the 5 of the sample points

{Q-D, Q-N, Q-P, D-N, D-P}.

Example 10: Anordinary die and adie whose faces have 2, 3, 4, 6, 7, 9, dots are tossed
independently of one another, and the total number of dots on the two diceisrecorded as V.
Find the probability that N > 10 .

Solution: It isassumed that for each die, each face has a% probability of turning up. If the
number of dotsturning up on die 1 and die 2 are d; and d, respectively, then the tosses that
resultin N =d; + dy > 10 are

(1,9), (2,9), (3,7), (3,9), (4,6), (4,7),(4,9), (5,6), (5,7), (5,9), (6,4), (6,6), (6,7), (6,9)
14 combinationsin 6 x 6 = 36 combinations that can possibly occur. Since each of the
36 (dy,dy) combinationsisequaly likely, the probability is % : O

Example 11: Three nickels, one dime and two quartersarein apurse. In picking three
coins at one time (without replacement), what is the probability of getting atotal of at least 35 cents?

10



Solution: Inorder to get at least 35 cents, at least one quarter must be chosen. The possible
choicesare 1Q + any 2 of the non-quarters, or 2Q + any 1 of the non-quarters.

The total number of ways of choosing three coins from the six coinsis ( ) =20 .

If welabel the two quartersas Q; and Q. , then the number of ways of choosing the three coins
so that only Q; (and not Q,) isin the choiceis (5) = 6 (thisisthe number of ways of choosing
the other two coins from the three nickels and one dime) - and therefore, the number of choices
that contain only Q, (and not Q) isalso 6. The number of ways of choosing the three coins so
that both Q, and Q, arein the choice is4 (thisis the number of ways of choosing the other coin
from the three nickels and one dime). Thus, the total number of choices for which at least one of
the three coins chosen isaquarter is 16. The probability in question is 10

Alternatively, the number of three coin choices that do not contain any quarters is ( ) = 4 (the
number of ways of choosing the three coins from the 4 non-quarters), so that number of choices
that contain at least one quarter is 20 —4 =16. [

Example 12: A and B draw coinsin turn without replacement from a bag containing 3 dimes
and 4 nickels. A drawsfirst. Itisknown that A drew thefirst dime. Find the probability that A
drew it on the first draw.

P[A draws dime on first draw]
P[A drawsfirst dime]

Solution:  P[Adraws dime on first draw|A draws first dime] =

P[Adrawsdimeon first draw| = %

Since there only 3 dimes, in order for A to draw the first dime, this must happen on A's first,
second or third draw. Thus,

P[Adrawsfirst dime] = P[A draws dime on first draw]
+ P[Adrawsfirst dime on second draw| + P[A draws first dime on third draw] .

P[Adrawsdimeonseconddraw] = = - ¢ - £ = 35 , since A'sfirst draw is one of the four non-

dimes, and B'sfirst draw is one of the three remaining non-dimes after A's draw, and A's second
draw is one of the three dimes of the five remai ning coins. Inasimilar way, [A draws fi rst

dime on third draw] = % : % . % - }I .1 =L . Then, P[Adrawsfirstdime = 7 + % + ﬁ % ,
and
P[A draws dimeon first draw| A drawsfirst dime] = 23/% = % O

11



Example 13: Three people, X, Y and Z, in order, roll an ordinary die. Thefirst oneto roll an
even number wins. The game continues until someone rolls an even number. Find the
probability that X will win.

Solution: Since X rollsfirst, fourth, seventh, etc. until the game ends, the probability that X will
win is the probability that in throwing a die, the first even number will occur on the 1st, or 4th, or
7th, or . . . throw. The probability that the first even number occurs on the n-th throw is
ITyn—1/1 1
() (EF) =3 n-1

of independence of successive throws, with A; = "throw ¢ iseven", the probability that the first
even throw occurs on throw n is

Tyn—1,1 1
PA N A N--NA, NA) = PlA]- PlA]--PlA, ] PlA)] = Q)" '(3) = o

Thus, PIfirst even throw ison 1st, or 4th, or 7th, or ...] — L

1 1 1 4
51 +...:§(1+§+8_2+...):7.D

[\31| =

Example 14: Urn| contains 7 red and 3 black balls, and Urn 1l contains 4 red and 5 black balls.
After arandomly selected ball istransferred fromUrn | to Urn 1l, 2 balls are randomly drawn
from Urn Il without replacement. Find the probability that both balls drawn from Urn Il are red.

Solution: Define the following events:
Ry thebal transferred from Urn I toUrn Il isred
By : the ball transferred from Urn | to Urn 1l is black
R two red balls are selected from Urn |1 after the transfer fromUrn | toUrn 1l .

Since R, and B, are mutually exclusive,
P[R;] = P[RyN(Ry UBy)] = P[Ry N Ry| + P[R, N By]

) 7,0 3_u

o, 70t 7oy 10 — 25 -
(2) (%)

= P[Ry|Ry] - P[R)] + P[Ry|Bi] - P[By] =

Example 15: A calculator has arandom number generator button which, when pressed, displays
arandomdigit 0,1, ...,9. Thebuttonis pressed four times. Assuming that the numbers
generated are independent of one another, find the probability of obtaining one"0", one"5", and

two "9"'sin any order.

Solution: Thereare 10* = 10,000 four-digit orderingsthat can arise, from 0-0-0-0 to
9-9-9-9. From the notes above on permutations, if we have four digits, with one"0", one"5"
and two "9"'s, the number of orderingsis %;z' = 12. The probability in question isthen 101300 .0

12



Topic 2. Univariate Random Variables

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Random variable X: A random variable is afunction on a sample space S. Thisfunction
assignsarea number X (s) to each sample point s € S. Often arandom variable is simply equal
to the sample point s, if the sample points are numerical values - for example, the sample space
representing the number of spots that turn up when an ordinary dieistossed is

S =1{1,2,3,4,5,6},and X(s) = s describestherandom variable X which isthe number of
spots that turn up. Alternatively, suppose that a gamble based on the outcome of the toss of adie
pays $10 if an even number istossed, and pays $20 if an odd number istossed. The payoff can
be represented by the random variable Y, where Y (s) = 10 if siseven,andY(s) =20 if sis
odd. A random variable is sometimes described in terms of the outcome of a random experiment
(such astossing adie), or may be described without explicit reference to the underlying random
experiment or sample space (such as the prime rate of interest two years from now). Given a set
of real numbers, A, then P[X € A] isdefined to be the probability of the event represented by
the related subset of the sample space P{s: X(s) € A} . Using random variable Y from the
$10 for even, $20 for odd die toss example, we have, as an example,

PlY > 12| = P[{s: Y(s) > 12| = P[{1,3,5}] , since these are the sample points s for which
Y (s) > 12 (for afair die, this probability is %).

Discreterandom variable: The random variable X isdiscrete and is said to have adiscrete
distribution if it can take on values only from afinite or countable infinite sequence (usualy the
integers or some subset of the integers). Asan example, consider the following two random
variables related to successive tosses of a coin-

X =1 if thefirst head occurs on an even-numbered toss, X = 0 if the first head occurs on an

odd-numbered toss;

Y = n, where n isthe number of the toss on which the first head occurs.

Both X and Y are discrete random variables, where X can take on only the values0 or 1, and Y’
can take on any non-negative integer value. Both X and Y are based on the same sample space -
the sample points are sequences of tail coin flips ending with ahead coin flip:

S={H,TH,TTH,TTTH,TTTTH, ..}
Then,
X(H) = 0 (ahead on flip one, an odd-numbered flip), X (TH) = 1, X(TTH) =0, ...
Y(H) = 1(firstheadonflip1), Y (TH) =2, Y(TTH) =3, Y(TTTH) =4, ...
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Probability function of a discreterandom variable: The probability function (p.f.) of a
discrete random variableis usualy denoted f(z), fx(x), p(z) or p,, and isequal to P[X = z].
The probability function must satisfy

(i) 0< f(z) <1fordl z, and (i) Y f(z)=1.
Given aset A of real numbers, P[X € A] =5 f(z) .

€A

Continuousrandom variable: A continuous random variable usually can assume numerical
values from an interval of real numbers, perhaps the whole set of real numbers R. Asan
example, the length of time between successive streetcar arrivals at a particular (in service)
streetcar stop could be regarded as a continuous random variable (assuming that time
measurement can be made perfectly accurate).

Probability density function: A continuous random variable X usually has a probability
density function (p.d.f.) denoted f () or fx (z) (or sometimes denoted p(x) ), whichisa
continuous function except possibly at a finite number of points. Probabilitiesrelated to X are
found by integrating the density function:

P[X € (a,b)] = Pla < X < b] isdefined to be equa to fabf(:z;) dz .
f(x) must satisfy
() f(z) >0 foralz, and (i) [~ f(z)dz=1.

Often, the region of non-zero density isfinite, and f(x) = 0 outside that interval.
If f(z) iscontinuous except at afinite number of points, then probabilities are defined and
calculated asif f(x) was continuous everywhere (the discontinuities are ignored).

For example, suppose that X has density function

f(x) - { 0, elsewhere

Then  f satisfies the requirements for adensity function, since [*_f(z) dz = f012x dr = 1.
Then, for example .

2z for O<z<1

Pl2< X < .5]= f_'252xda: = xz‘

= 9L
2

Mixed distribution: A random variable that has some points with non-zero probability mass,
and with a continuous p.d.f. elsewhere is said to have a mixed distribution. The sum of the
probabilities at the discrete points of probability plus the integral of the density function on the
continuous region for X must be 1.

For example, suppose that X has probability of .5 at X = 0, and X is a continuous random
variable on the interval (0, 1) with density function f(z) =z for 0 < z < 1, and X hasno
density or probability elsewhere. This satisfies the requirements for a random variable since

PIX =0+ [l f(x)de =5+ [lede=5+.5=1.
Then, P[0 < X < .5] = [’z dz = .125, and
P0<X < .5]=P[X=0/4+Pl0< X< .5 =.5+.125=.625.
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Cumulative distribution function (and survival function): Given arandom variable X, the
cumulative distribution function of X (also called the distribution function, or c.d.f.) is

F(x) = P[X < z] (dsodenoted F'x (x) ). The survival function is the complement of the
distribution function, S(z) =1 — F(z) = P[X > z|. Theevent X > z isreferredtoasa
"tail" of the distribution. For a discrete random variable with probability function f(x)

Fr) =2 f(w)

w<x
Inthiscase F'(x) isa"step function”. It has ajump (or step increase) at each point with non-zero
probability, while remaining constant until the next jump.

If X has a continuous distribution with density function f(x), then

F(x) = f_TOC f@t)dt

and F'(z) isacontinuous, differentiable, non-decreasing function such that
7 Fo) = F'(x) = f(2),

If X hasamixed distribution, then F'(z) is continuous except at the
points of non-zero probability mass, where F'(z) will have ajump. For any c.d.f.

Pla< X <b]=F(@0)—F(a), imF(x)=1, lim F(x)=0.

Tr—00 T——00

Examples of distribution functions:
X = number turning up when tossing one fair die, so X has probability function

fx(z)=P[X =1|= % for t =1,2,3,4,5,6. X isadiscrete random variable.
fO if r<1

if 1<z<?2

if 2<xz<3

if 3<x<4

if 4<x<b

if 5<x<6
if >6

— D TTO R DWW DD O —

\

Y isacontinuous random variable on the interval (0, 1) with density function

3y? for 0<z<1

fy(y) - {O, elsewhere
Then
0if y<O
Fy(y):{y3if 0<y<l1
1if y>1
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Z hasamixed distribution on the interval [0, 1). Z has probability of .5 at Z = 0, and Z has
density function f;(z) = z for 0 < z < 1, and Z has no density or probability el sewhere.

Then, 0if 2<0
Hif z=0
S4+122if0<z<1
1ifz>1

Fz(Z) =

Some results and for mulasrelating to this section:

(i) For acontinuous random variable X,
Pla< X <b=Pla<X<b=Pla<X<b=Pla<X<Db],
so that when calculating the probability for a continuous random variable on an interval,
itisirrelevant whether or not the endpoints are included. For a continuous random variable,
P[X =a]=0.
non-zero probabilities only exist over an interval, not at asingle point. Also, for a continuous
random variable, the hazard rate or failurerateis

h(z) = T = i Infl - F(2)
(i) If X hasamixed distribution, then P[X = ] will be non-zero for some value(s) of ¢, and
Pla < X < b] will not alwaysbeegual to Pla < X < b] (they will not be equal if X hasanon-
zero probability mass at either a or b).

(iii) f(z) may be defined piecewise, meaning that f(x) is defined by a different algebraic
formula on different intervals.

(iv) A continuous random variable may have two or more different, but equivalent p.d.f.'s, but
the difference in the p.d.f.'swould only occur at afinite (or countably infinite) number of points.
The c.d.f. of arandom variable of any type is always unique to that random variable.

Example 16: A dieisloaded in such away that the probability of the face with ;5 dots turning up
isproportiona to jfor j=1,2,3,4,5,6 . What isthe probability, in oneroll of the die, that an
even number of dotswill turn up?

Solution: Let X denote the random variable representing the number of dots that appears when
thedieisrolled once. Then, P[X = k] =R -k for k=1,2,3,4,5,6 , where R isthe

proportional constant. Since the sum of all of the probabilities of pointsin that can occur must

bel.itfollowsthat R-[1+2+3+4+5+6]=1,50tha R = 5

=
Then, Pleven number of dotsturnsup] = P[2] + P[4] + P[6] = % =1. 0O
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Example 17: Anordinary single dieis tossed repeatedly until the first even number turns up.
The random variable X is defined to be the number of the toss on which the first even number

turnsup. Find the probability that X is an even number.
Solution: X isadiscrete random variable that can take on an integer value of 1 or more. The

probability function for X is f(z) = P[X = x| = (%)5C (thisisthe probability of x — 1 succesive
odd tosses followed by an even toss - the same as in Example 92 earlier in these notes). Then,

DN

P(x iseven] = P[2] + P[4] + Pl6] + - = (5> + (5)* + (3)° + -+ = T = L. O
Example 18: The continuous random variable X has density function
f(z) =3—482? for —.25 <z < .25(and f(z) = 0 elsewhere). Find P[§ < X < 2]

Solution: P[.125 < X < .3125] = P[.125 < X < .25] , sincethereisno density for X at
points greater than .25. The probability is [ ‘12255(3 — 48x2) dx = % . O

Example 19: Suppose that the continuous random variable X has the cumulative distribution

function F(z) = Hle,w for —oo < < oco. Find X'sdensity function.

Solution: The density function for a continuous random variable is the first derivative of the

T

cumulative distribution function. The density function of X is f(z) = F'(z) = (pfe——w)? O

Example 20: X isarandom variablefor which P[X <z]=1-e"" for z > 1, and
P[X < z] =0 for z < 1. Which of the following statementsis true?

A) PIX=2]=1-¢? and P[X=1]=1-¢"!

B) P[X=2]=1-¢2 and P[X<1]=1-¢!

C)P[X=2]=1—-¢? and PX<1]=1—¢"!

D) PIX<2=1—¢? and P X<1]=1-—¢"!

E) PIX<2]=1—¢? and P[X=1]=1-¢"!
Solution: Since P[X <x]=1-e¢7® for x > 1,itfollowsthat P[X <1]=1—-¢!.
But P[X <] =0 if z <1,andthus P[X <1]=0,s0that P[X=1]=1—¢!
(since P[X < 1] = P[X < 1]+ P[X = 1] ). Thiseliminates answers C and D. Since
the distribution function for X is continuous (and differentiable) for = > 1, it follows that
P[X =] =0 for z > 1. Thiseliminates answers A, B and C.

Thisis an example of arandom variable X with a mixed distribution - a point of probability at
X =1, and acontinuous distributionfor X > 1. O
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Example 21: A continuous random variable X has the density function

2c, 0<z< 3
fla)y=¢ 22, L <p <9

0, elsewhere
Find P[.25 < X < 1.25].

Solution: P[25 < X <1.25] = [ f(z)dz = [, 2z dz + [ 522 da =3 .
Note that since X is a continuous random variable, the probability P[.25 < X < 1.25]
would bethe sameas P[.25 < X < 1.25] . Thisisan example of a density function defined

piecewise. Also, notethat if the density function was defined to be

2z, 0<z<3
glr)={ 0, w=1/2

i2r L p <o
then all probabilities are unchanged (since the two density functions f and g differ at one point,
probability calculations, which are based on integrals of the density function over an interval, are
the samefor both f andg). O

EXPECTATION AND OTHER DISTRIBUTION PARAMETERS

Expected value of arandom variable: For arandom variable X, the expected value is denoted
E[X] or p, or p.
For a discrete random variable, the expected value of X is

EX] = Xz f(x)

where the sum is taken over all points x at which X has non- zero probability. For instance, if
istheresult of onetoss of afair die, then

E[X]zl-%+2-é+...+6.%:%_

For a continuous random variable, the expected value is
E[X] = f“ z- f(x)ds

athough the integral is written with lower limit — oo and upper limit oo, the interval of integration
istheinterval of non-zero-density for f .

Notethat f isthe probability function in the discrete case, and f is the density function in the
continuous case. The expected value of X isalso called the expectation of X, or the mean of

X. The expected value isthe "average" over the range of valuesthat X can be, or the "center" of
the distribution.

Expectation of h(z): If hisafunction, then E[h(X)] isequal to

E[h(X)]= 21: h(z) - f(x) if X isadiscrete random variable,

E[h(X))= [ h(z) - f(z) dx if X isacontinuous random variable.
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Momentsof arandom variable: If n > 1 isaninteger, then the n-th moment of X is E[X"].
If the mean of X is i, then the n-th central moment of X (about the mean ) is E[(X — 1)"]

Varianceof X: Thevariance of X isdenoted Var[X], V[X], o% or o*. Itisdefined to be equal to
Var[X] = B[(X—pux)?] = B[X?] — i = B[X?] — (E[X])?

(the variance is the 2nd central moment of X about its mean). The variance is a measure of the
"dispersion” of X about the mean - alarge variance indicates significant levels of probability or

density for points far from E[X]. Thevarianceisaways > 0 (the variance of X isequal to 0

only if X has adiscrete distribution with asingle point and probability 1 at that point (not random at all).

Standard deviation of X: The standard deviation of the random variable X isthe square root
of the variance, and is denoted

ox = /Var[X]
Moment generating function of random variable X: The moment generating function of X
(m.g.f.) isdenoted Mx (t), mx(t), M(t) or m(t), and it isdefined to be
My (t) = E[e*X], whichiseither Y- ef(z) or [ e f(z)dx

if X isdiscreteor continuous, respectively. Itisawaystrue that Mx(0) = 1. The moment generating
function of X might not exist for al real numbers, but usually exists on some interval of real numbers.
Thefunction In[Mx(t)] iscalled the cumulant generating function.

Percentilesof adistribution: If 0 < p < 1, thenthe 100p-th percentile of the distribution of
X isthe number c, which satisfies both of the following inequalities:

PX <c¢)>p PX>c¢|>1-p
For a continuous random variable, it is sufficient to find the ¢, for which P[X < ¢,] =p.

If p=.5 theb50-th percentileof a distribution isreferred to asthe median of the distribution.
It isthe point M for which

PIX <M]=.5=P[X >M].

The mode of a distribution: The mode is any point m at which the probability or density
function f(z) is maximized.

The skewness of a distribution: If the mean of random variable X is y and the variance is o
then the skewnessisdefinedtobe FE[(X — u)*]/o* .
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Some results and formulasrelating to this section:
(i) The mean of arandom variable X might not exist, it might be + coor — oo, and the

variance of X might be + oo. For example, the continuous random variable X with

pdf. f(z) = {

(if) For any constantsa,, a, and b and functions h; and h;,

4 for z>1 o 1
i _ hasexpectedvalue [[“z- 5 dr = +o0.
0, otherwise x

E[(J/lh/l (X) + (J/Qh/g (X) + b] = (IlE[hl (X)] + (]QEVLQ (X)] + b
(i) If ¢ and b are constants, then ,
Var[aX +b] = a*Var[X].

(iv) If X isarandom variable defined on theinterval [a, c0) (f(xz) = 0 for z < a),
then E[X]=a+ [ [l — F(z)]dz,andif X isdefined ontheinterval [a,b] , where
b < oo, then E[X] =a+ ff[l — F(z)]dz . Thisrelationshipisvalid for any random
variable, discrete, continuous or with amixed distribution. Asaspecial, case, if X isa
non-negative random variable (defined on [0, co) or (0, o) ) then
BIX)= [*[1 - F(x)] da

(v) Chebyshev'sinequality: If X isarandom variable with mean . x and standard deviation o
then for any real number » > 0,

-9,

PlX—pn |>r]<

<
[N

(v) Jer;sen'sinequality: If hisafunctionand X isarandom variable such that
% h(z) = h"(z) > 0 at all points z with non-zero density or probability for X,
then E[h(X)] > h(E[X]),andif A" > 0 then
E[h(X)] = h(E[X]).

reversesif h” < 0. Forexample, if h(x) = 22 ,then h"(x) =2 > 0 for any z, so that
E[X?] > (E[X])? (thisisasotruesince Var[X] = E[X?] — (E[X])? > 0 for any random
variable X). Asanother example, if X isapositive random variable (i.e., X has non-zero
density or probability only for = > 0), and h(z) = \/5 then A" (x) = ﬁ}/z <0forz>0,
and it follows from Jensen'sinequality that [/ X] < \/E[X] .

(vii) Suppose that for the random variable X, the moment generating function M x (t)
existsin an interval containing the point ¢ = 0. Then

5 Mx(0)| =M (0) = BIX"
4 ln[MX(t)]‘tZO = 380 = EIX], and & in[Mx (0] = Var(X].

The Taylor series expansion of M (t) expanded about the point ¢ = 0 is

o0 Lk 2 3
My(t) =Y 5 EX" =1+t EX|+5 BX+ L BX]+-
k=0
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If X, and X, arerandom variables, and My, (t) = Mx,(t) for all valuesof ¢ inan
interval containing ¢ = 0, then X; and X, have identical probability distributions.

(viit) The median (50th percentile) and other percentiles of adistribution are not always
unique. For example, if X isthe discrete random variable with probability function
f(x) =.25for z =1,2,3,4, then the median of X would be any point from 2 to 3,
but the usual convention isto set the median to be the midpoint between the two
"middle" valuesof X, M = 2.5.

(ix) Thedistribution of the random variable X is said to be symmetric about the point
cif f(c+1t)= f(c—t) foranyvalueof ¢. It followsthat the expected value of X

and the median of X isc. Also, for asymmetric distribution, any odd-order central
moments about the mean are 0, i.e. E[(X — u)*] = 0 if k > 1 isan odd integer.

() If E[X]=pu, Var[X] =02 and Z isdefinedtobe Z = * £ | then
E[Z] =0 and Var[Z] =1.

Example 22: Let X equa the number of tosses of afair die until thefirst "1" appears. Find E[X].

Solution: X isadiscrete random variable that can take on an integer value > 1. The

probability that the first 1 appears on the z-th tossis f(z) = (2)7"'(§) for z > 1

(z — 1tossesthat arenot 1 followed by al). Thisisthe probability function of X. Then
BIX] =3k (k) = 2k ()" (5) = (I +2(3) + 33+
We use the general increasing geometric seriesrelation 1+ 2r + 372 + -+ = TEER

sothat E[X] = (3)- (11%)2 =6. O

Example 23: Given that the density function of X is f(x : 0) = 82, for x > 0, and 0
elsewhere, find the n-th moment of X, where n is anon-negative integer (assuming that 6 > 0).

Solution: Then-th moment of X is E[X"] = [“z" - fe *?dx . Applying integration by
parts, this can be written as

foooxn d( _ efxe) - _ :Cnef:w

=00

— fooo —na e dy = fooonx”’l e0dzr.

=0
n!

Repeatedly applying integration by partsresultsin E[X"] = gn - Itisworthwhile noting the
general form of theintegral that appearsin thisexample-if k£ > 0 isaninteger and a > 0, then
by repeated applications of integration by parts, we have foo"tk e~ dt = af—ll , Sothat inthis

! !
example [“z"0e Pdx =0 [ a"e Pdr =0 gix = g - O
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Example 24: A fair dieistossed until thefirst 1 appears. Let x equal the number of tosses
required, = = 1,2,3,... Youaretoreceive(.5)” dollarsif the 1 appears on the z-th toss. What
Is the expected amount that you will receive?

Solution: Thisisthe same distribution asin Example 101 above, with the probability that the

first 1 appears on the z-th tossbeing (2)*~'(%) for = > 1 (z — 1 tossesthat are not 1 followed
by a 1), and the amount received in that caseis h(z) = (.5)*. Then, the expected amount
received is >

Example 25: A continuous random variable X has density function

1—|z| if |2|<1
i

0, elsewhere

Find Var[X].

Solution: The density of X issymmetric about 0 (since f(z) = f( — x)), sothat E[X]=0.
(this can be verified directly

EX] = [La(—|z))dz = [ 21+ ) dz + [jz(l—2)de= — § +§ = 0).

Then, )
Var(X] = E[X? — (E[X))? = E[X?] = [1 22(1 - |a]) do

= folmz(l +z)dx + folxz(l —x)dr =

Example 26: The moment generating function of X is —% for t < o, where a > 0. Find Var[X].

Solution: Var[X] = B[X?] - (E[X])*. E[X] = M}(0) = 85| = 1 and
t=
BIX) = M{(0) = 2| =& - VarlX]=Z - ()= &
Alternatively,
In My (t) = In(=25) = Ina — In(a —t) » Lin[Mx(t)] = -
and
d? d?
&2 In[Mx(h)] = i sothat Var[X] = 4 ln[MX(t)]‘tzo s

Example 27: The continuous random variable X hasp.df. f(z) =3 -e7l*l for — oo <z < o0
Find the 87.5-th percentile of the distribution.
Solution: The 87.5-th percentile is the number b for which

875 =P[X <] = ffoo f(z)de = ffoo% ekl dg
Note that this distribution is symmetric about 0, since f( — z) = f(z), so the mean and median
areboth 0. Thus, b > 0, and so

ffoo% celldy = ffoo% - e 1l dx+f0b% ce Tl dr = .5—|—f0b% e tdx
:.5+%(1—e*b):.875—>b: —In(.25)=In4. 0O
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FREQUENTLY USED DISCRETE DISTRIBUTIONS

Uniform distribution on N points.  We denote X ~ Uniform (1/N). The probability function is
fl) = forz=1,2,..., N,and f(z) = 0 otherwise.

2 ) Nt __
BIX) = 5, Varlx] = XL Mx(t) = S5 = Sy foranyreal ¢

Binomial distribution with parametersn and p (n > linteger and 0 < p < 1):

A singletria of an experiment resultsin either success with probability p, or failure with
probability 1 — p = ¢. If n independent trials of the experiment are performed, and X isthe
number of successes that occur, then X isan integer between 0 and n. X issaid to have a
binomial distribution with parameters » and p (sometimes denoted X ~ B(n, p)).

flx) = (n)px(l —p)"* for x=0,1,2,..., n,

E[X|=np, Var[X] =np(1 —p) Mx(t) = (1—p+ pe)".

In the special caseof n = 1 (asingletrial), the distribution is referred to as a Bernoulli
distribution. If X ~ B(n,p), then X isthe sum of n independent Bernoulli random variables
each with distribution B(1, p).

Poisson distribution with parameter A > 0: Wedenote X ~7P (1) if the probability function of X is
flo)= <X 2 =0,1,2,3, ...,

z!

E[X]=Var[X] =X, Mx(t) =\

The Poisson distribution is often used as amodel for counting the number of events of a certain type
that occur in acertain period of time.

Suppose that X represents the number of customers arriving for service at bank in a1 hour period, and
that amodel for X isthe Poisson distribution with parameter A\. Under some reasonable

assumptions (such as independence of the numbers arriving in different time intervals) it is

possible to show that the number arriving in any time period a so has a Poisson distribution with

the appropriate parameter that is"scaled” from \. Supposethat A = 40 - meaning that X, the

number of bank customers arriving in one hour, has amean of 40. If Y represents the number of
customers arriving in 2 hours, then Y has a Poisson distribution with a parameter of 80 - for any
timeinterval of length ¢, the number of customers arriving in that time interval has a Poisson
distribution with parameter A\t = 40t - so the number of customers arriving during a 15-minute

period (t = i hour) will have a Poisson distribution with parameter 40 - 411 = 10.
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Geometric distribution with parameter p (0 < p < 1): A singletrial of an experiment results
in either success with probability p, or failure with probability 1 — p =¢q .

The experiment is performed with success ve independent trials until the first success occurs.

If X represents the number of failures until the first success, then X isadiscrete random
variablethat canbe 0,1, 2,3, ... . X issaid to have a geometric distribution with parameter p.

flx)=(1—=p)y*pfor x=0,1,2,3,...,

5
=
|

S

BX]=5P =1, VarlX]= P =1
p p p p
The geometric distribution has the lack of memory property:
P X =n+klX >n]=P[X =k].
Another version of a geometric distribution is the random variable Y, the number of the
experiment on which the first successoccurs, Y= X +1 and P[Y =y|=P[X =y —1].
Negative binomial distribution with parametersrand p(r > 0and 0 < p < 1):

r+x—1
f(z) =< . >p7‘(1—p)f,forx:0,1,2,3,...,

_r(l-p r(l— D A '
E[X] - % ) VCLT[X] = (p2p) ) MX(t> = [17(1{]))et:|

If » isan integer, then the negative binomia random variable X can be interpreted as being the
number of failures until the r-th success occurs when successive trials of an experiment are performed
for which the probability of successin asingle particular trial isp (the distribution is defined even if r
IS not an integer).

The notationg is sometimes used to represent1 — p. The geometric distribution is a special case of
the negative binomial with » = 1.

Multinomial distribution: Thisdistribution is discussed later in these notes.

Hypergeometric distribution with integer parametersm, Kk and 0< K <Mand1<n < M:
Inagroup of M objects, K areof Typel and M — K areof Typell.
If n objects are randomly chosen without replacement from the group of M , let
X denote the number that are of Type in the group of n .
X isanon-negative integer that satisfies X <n, X <K, 0<Xadn—- (M -K)<X.
X hasahypergeometric distribution: X ~ H (M, n, K ). The probability function is

(K) (ﬂ]—[\")
f(x) = % . for maz[0,n — (M — K)] <z < minn, K|
(there are (]f ) ways of choosing the  objects from the group of M, and the number of choices
that result in” objectsof Typel and n — = objects of typell is (f) (]Z:f)) and

E[X] = nK, Var[X] = nKM _K)(Mn)
M M*(M—1)
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Recursiveréationship for the binomial, Poisson and negative binomial distributions:
The probability function for each these three distributions satisfies the following recursive

relationship - — o + for k=1,2,3,....

-2\ k
Poisson with parameter \: 2% = e—/\ik—i\/(/lf!—l)! = % 2a=0, b=\,

Pk-1
Binomial with parametersn and p: a = — ﬁ , b= %.

Negative binomia with parametersrandp: a =1—p, b= (r—1)(1 —p).

Example 28: X isadiscrete random variable that is uniformly distributed on the even integers
x=0,2,4,...,22, so that the probability function of X is f(x) = % for each even integer
from 0 to 22. Find E[X]and Var[X].

Solution: The discrete uniform distribution described earller in the notes is on the points
x=1,2,...,N. If weconsider the transformation Y = then the random varlabIeY is

distributed on the points Y = 1,2, ..., 12, with probabilltyfunctlon fr(y) = 12 for each
integer y from 1 to 12. Thus, Y hasthe discrete uniform distribution described earlier in the

notes, and

12+1 13 1221 143 .
E[Y]| = —2+ =35 VarlY]|=*5 =%

Butsince Y = % , we can use rules for expectation and variance to get

E[X]+2

E[Y] = D)

E[X]=2-E[Y]-2=11
and

V(LT‘[Y] — VCLT[%] — /ll . V(LT[X] 150that Var[X] =4. VCLT[Y] = 14?3 . O

Example 29: If X isthe number of "6"'s that turn up when 72 ordinary dice are independently
thrown, find the expected value of X?2.

Solution: X hasabinomial distribution with n» =72 and p = % . Then
E[X]=np=12,and Var[X]| =np(l —p) =10. But Var[X] = E[X?] — (E[X])?,
sothat E[X?] =10+ 122 = 154. O

Example 30: The number of hits, X, per baseball game, has a Poisson distribution. If the probability

of ano-hit gameis {5555 000 , find the probability of having 4 or more hitsin a particular game.

Solution:  P[X = 0] = S5 = ¢ = s » A = 110,000

P[X24]:1—(P[X=O]+P[X:1]+P[X=2]+P[X:3])

—)\_)\0 —)\_)\1 —>\_>\2 —)\_)\3
:1_(601 +611 +62| +631 )
_ 1 In10,000 (In10, 000) (lnlO,OOO)3 o
=1- <10 000 + 10,000 + 2(10,000) + 6(10,000) ) =.9817. 1
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Example 31: Inrolling afair die repeatedly (and independently on successive rolls), find the
probability of getting thethird "1" on the ¢-th roll.

Solution: The negative binomial random variable X with parametersr = 3 and p = % iIsthe
number of failures (rolling 2,3,4,5 or 6) until the 3rd success. The probability that the 3rd
success (3rd "1") occurs on the t-th roll is the same as the probability of x =t — 3 failures
before the 3rd success. Thus, with X = T — 3, X isanegative binomial random variable with
parameters =3 and p = % . The probability is

PR =r-3= (") @@ = (15) @
= (“1)(%)3(%)“3 (the final equality followsfrom () = ("))

2

Example 32: Anurn contains 6 blue and 4 red balls. 6 balls are chosen at random and
without replacement from the urn. If X isthe number of red balls chosen, find the standard
deviation of X.

Solution: Thisisahypergeometric distribution with M =10, K =4 and n = 6.
The probability function of X is

Thevarianceis Var[X] = MZ(V-1) = .64 . Standard deviationis+/.64 = .8. O

26



FREQUENTLY USED CONTINUOUSDISTRIBUTIONS

Uniform distribution on theinterval (a,d) (Where —oo <a <b < o0): Thep.df.is

flz) == for a <z <b, and f(x) = 0 otherwise.

b—a
BX| =4 Varlx] = UE | My(t) = G55 foranyredl ¢,
E[Xn] . bn+lian+1
= ra)ba)-

b—a

Thisisasymmetric distribution about the mean. median= -

Normal distribution with mean p and variance o (— co < u < oo, o2 > 0):

flz) = — =@ /20" for o0 < 2 < o0,
o/ 2m

B[X] =, Var[X] = 0% Mx(t) = eap|ut + 2.
If © =0 and o?=1 ,thedistribution isreferred to asa standard normal distribution.
Inthiscase, F'(x)issometimes denoted ¢ (z).

Tables of valuesof ®(x) may be found in most statistics textbooks and are provided with the exam.
provided with the exam. If 0 < a < 1, the notation z, refersto the point in the standard normal
distribution Z such that

P[Z > z,] =a (2, isthe 100(1 — «) percentile of the standard normal distribution).

normal distribution). X ~ N (u,0?) isused as notation describing X as a normal randomally distributed
variable variable with mean 1 and variance o2. Animportant rule concerning the normal distribution is that

If X ~ N(u,o0?), then y = £ N(0,1)

The normal distribution is symmetric (f(x) is "bell-shaped", peaking at = = p) with
mean = median = mode = p.
From the standard normal table, it can be seenthat (1) = P[Z < 1] = .8413 . Because of the
symmetry about 0 of the standard normal distributionit follows that
1-®(—-1)=P[Z> —1] = .8413
and then
d(—-1)=P[Z< —1]=1-P[Z> —1] =1— .8413 = .1587 -
Ingeneral, for a >0, ®(—a) =1— ®(a) . Given any normal random variable X ~ N (p, 02)
itispossibleto find Plr < X < s] by first "standardizing': 7 — X—#

Plr< X <s] =P/t < X2

2 2 g

g

< S = a5 - ()

2 2

Approximating a distribution using a normal distribution: Given arandom variable with

mean 1. and variance o2, probabilities related to the distribution of X are sometimes

approximated by assuming the distribution of X is approximately N (u, o?). If X isdiscrete and
integer-valued then an "integer correction” is applied; the probability P[n < X < m] is

approximated by assuming that X isnormal and then finding the probability P[n — % <X<m+ %] .

27



Exponential distribution with mean + > 0
f(x)=Xe ™ for z >0, andf(z) =0 otherwise,
F(z)=1-¢?"for £ >0, and P[X >z]=¢",

EX]=1  var[X] =L, E[X'N=["z" AeMde=E

1
PN X 0 £E

Mx(t) =25+ t<A.

(note that an exponential distribution with mean p hasp.d.f. f(x) = %eﬁ/ ",

There are afew important properties satisfied by the exponential distribution:
(i) lack of memory property- for z,y >0, P[X >z +y|X > z| = P[X > y].

(i) link between the exponential distribution and Poisson distribution - Suppose that X has

an exponential distribution with mean 1X and we regard X as the time between successive
occurrences of some type of event (say the event isthe arrival of anew insurance claim at an
insurance office), where time is measured in some appropriate units (second, minutes, hours or
days, etc.). Now, we imagine that we choose some starting time (say labeled as ¢ = 0), and from
now we start recording times between successive events. Let IV represent the number of events
(claims) that have occurred when one unit of time has elapsed. Then NV will be arandom
variable related to the times of the occurring events. The distribution of NV is Poisson with
parameter .

(iii) theminimum of a collection of independent exponential random variables:

Suppose that independent random variables Y7, Y5, ..., Y, have exponential distributions with

means 5-, y-,..., 1= (Parameters i, Xy, ..., A,) respectively.

Let Y =min{Y}, Y5, ..., Y,}. ThenY hasan exponentia distribution with mean

1
A1tAgte A,

(iv) a" mixture" of distributions: Given any finite collection of independent random
variables, X, X, ..., X; with density or probability functions, say fi(x), fo(z), ... fi(z),
where k isanon-negativein%eger, and given a set of "weights’, oy, as, ..., ay, Where

0<a;<1foreachiand > «a; =1, itispossibleto construct the density function
i=1

f@) =aqfi(x) + asfo(z) + -+ + au fi (x) , which isa"weighted average" of the origina
density functions. It then follows that the resulting distribution X, whose density/probability
functionis f, has moments and moment generating function which are weighted averages of the
original distribution moments and moment generating functions:

E[X"] = an B[XT] + o E[X5] + - + . E[X[]

Mx(t) = OélM)(l(t) + OéQMXZ(t) + -+ OékMXk(t) .
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One common application of thisis seen in a distribution which is a"mixture of exponentials” -
suppose that the continuous random variable X has density function

_ -3 —4 I —p)
flx)=e" +2e% + ;e @/
After some consideration, it might be noticed that

flz) =% 3 + 1 de ¥ + ¢

1 e T/2 — Oélfl(x) + 042f2(33> + a3f3(.’,13)
where

=5.a=5, az=g ad fi(x) =37, f(x) =4, fy(x) = ge >

Thus, X isaweighted average of three exponential distributionswith parameters 3, 4 and 1/2,
and weights 51 %anda} . Then,

(03]

E[X] =5 -EXi\|+ 5 BlX)+§ - BlX]=§-5+5 1+ 05 =75 -
EIX) = 5 BIXH+ 5 BIX) 4+ G EIXS = 55+ 515 6 17 = 141
4
Var(X] = B[X*] — (B[X)? = 1§} — (3"
1
Mx(t) = §Mx,(8) + 5 Mx () + §Mx() = 555 + 5 17 T35 T
Gamma distribution with parametersa > 0 and 8 > 0:
f(x) = ﬂaﬁf(i;)ew for x >0, andf(z) =0 otherwise.
I'(c) isthe gamma function, which is defined for o > 0tobe T'(a) = [ y* ! - e ¥dy
from which it followsthat if n isapositiveinteger, I'(n) = (n — 1)
E[X]=9%, Var[X] = &, Mx(t) = (ﬂf’t)a for 0<t<g.

The exponential distribution with parameter )\ isa special case of the gamma distribution with
a=1and =\

Pareto distribution with parameters o, , > 0: The Pareto distribution with
parameters o > (0 and x, >0 has p.d.f.

flz) = xa—ﬁl, x>z, , f(r)=0 otherwise.

E[X]= & VarlX] = %

L ognormal distribution with parametersm and o2 > 0 (— co < m < 00):

If W ~ N(m,0?),then X =" hasalognormal distribution with parameters m and o2 (the
log of X hasanormal distribution N (m,c?)). Thep.df. of X is

flz) = Ml — cap| — (log(x) —m)?/20%] for x>0 and f(z) = 0 otherwise.

E[X] = ™27 | Var[X] = (7 — 1)e2m+7” .
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Beta distribution with parameters ¢ > 0 and b > 0: The beta function is defined to be
= [z 1(1 — z)*"'dz . The beta distribution with parametersa, b > 0 has p.d..

f(z) = Bab) 2N (1 —2)' for 0<x<1,and f(x) =0 otherwise.

Var[X] = b

a
= atb (a+b)2(a+b+1) °

The gamma function was defined earlier in the context of the gamma distribution. The beta
function can be expressed in terms of the gamma function:

B(a,b) = ((i'};é’))) ,and if ¢ and b areintegers > 0, then B(a,b) = % _

Example 33: Supposethat X has auniform distribution on the interval (0, a) , where a > 0.
Find P[X > X?].

Solution: If a < 1,then X > X? isawaystrue, sothat P[X > X?|=1.
If @ >1,then X > X? onlyif X < 1, which has probability

PIX <1]= [l f(z)dz = [} Ldz =1, Thus, PIX > X2 =min[1,1]. [

Example 34: The random variable T has an exponential distribution such that
P[T <2]=2-P[T > 4] . Find Var|[T).

Solution: Suppose that 7" has mean % PIT <2|=1-¢2 =2P[T > 4] = 2

522242 —1=0,where x = ¢ 2*
Solving the quadratic equation resultsin = = % , — 1.

—on _ 1 _1
e —2and)\—2ln2.

Then, Var[T] = & = = .

Example 35: If for acertain normal random variable X, P[X < 500] = .5 and
P[X > 650] = .0227 , find the standard deviation of X.

Solution: The normal distribution is symmetric about its mean, with P[X < u] = .5 for
any normal random variable. Thus, for thisnormal X, ;. = 500. Then,

P[X > 650] = .0227 = p|£20 » 150

g

Since @ has a standard normal distribution, it follows from the table for the standard
normal distribution that % =2.00and ¢ =75.0
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Example 36: Verify algebraically the validity of properties (i) (lack of memory) and (iii)
(minimum of acollection of independent exponential distributions) of the exponential
distribution listed earlier in these notes.

Solution: (i) Supposethat X has an exponentia distribution with parameter A\. Then

Pl(X>z+y)N(X>x P X>z+y —Mz+y) _
PIX > 0 4 yIX > o] = P00 _ PUCri] _ e _ oy,

and P[X >y|=e .

(iii) Suppose that independent random variables Y7, Y5, ..., Y,, have exponential distributions
with means i—l, i—Q,..., + (parameters Ay, Ao, ..., A,) respectively.
Let Y =min{Yy, Ys, ..., Y, }. Then,

PlY >y]=P[Y; > yforadli=1,2,...,n]

=P[(Y, >y)n (Y, >y)n---N(Y, >y)
= P[Y1 > y|- P[Y2 > y]---P[Y, > y] (because of independence of the Y;'s)
= (e M) (e M) .(e MY) = g Nitdot Ay

Thec.d.f of Yisthen
Fy(y)=PlY <y]=1-P[Y >yl =1— e Nihttly

and thep.d.f. of Yis

fy(y) — F{,(y) — ()\1 + )\2 + -4 )\n)@*()‘l+>\2+-~+>\n)y
which isthe p.d.f. of an exponential distribution with parameter \; + Ao + -+ A, . O

Example 37: Supposethat X has abinomial distribution based on 100 trials with a probability
of success of .2 on any given trial. Find the approximate probability P[15 < X < 25] .

Solution: The mean and variance of X are E[X] = 100(.2) = 20, Var[X] = 100(.2)(.8) = 16.
Using the normal approximation with integer correction, we assume that X is approximately
normal and find

P[145 < X < 25.5] = P[M'E’ﬁfo < % < Mﬁm] = P[—-1.375 < Z < 1.375],

where Z has a standard normal distribution.
P[—1.375 < Z < 1.375] = ®(1.375) — ®( — 1.375) = ®(1.375) — [1 — ®(1.375)] = 2P(1.375) — 1.

From the standard normal table we have ®(1.3) = .9032 and ®(1.4) = .9192. Using linear
interpolation (since 1.375is 2 of theway from 1.3 to 1.4) we have

®(1.375) = (.25)D(1.3) + (.75)®(1.4) = .9152

and then the probability in questionis 2(.9152) — 1 = .8304 . O
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Topic 3: Multivariate Random Variables

JOINT, MARGINAL, AND CONDITIONAL DISTRIBUTIONS

Joint distribution of random variables X and Y: A joint distribution of two random
variables has a probability function or probability density function f(z, y) that is afunction of
two variables (sometimes denoted fx v (x,y)).

If X and Y are discrete random variables, then f(z, y) must satisfy
() 0< flz,y) <1 and (i) "X f(z,y)=1.
Ty
If X and Y are continuous random variables, then f(z, y) must satisfy
(i) f(z,y) >0 and (i) [~ [ f(z,y)dyde=1.

It is possible to have ajoint distribution in which one variable is discrete and one is continuous,
or either has a mixed distribution. Thejoint distribution of two random variables can be
extended to ajoint distribution of any number of random variables.

If A isasubset of two-dimensional space, then P[(X,Y) € A] isthe double summation
(discrete case) or double integral (continuous case) of f(x,y) over theregion A.

Cumulative distribution function of ajoint distribution: If random variables X and Y havea
joint distribution, then the cumulative distribution function is

Fz,y) = PI(X <z)n (Y <y)].

Inthecontinuouscase,  F(z,y) = [ ' [f(s,t)dtds

i Y
andinthediscretecase,  Fl(x,y) =Y. > [f(s.t)
§=—00 t=—00
In the continuous case, s F(z,y) = f(x,y)

Oz Oy

Expectation of a function of jointly distributed random variables: If h(zx,y) isafunction of
two variables, and X and Y arejointly distributed random variables, then the expected value of
h(X,Y") isdefined to be
Eh(X,Y)] =>> h(x,y) - f(z,y) inthediscrete case, and
Ty

EhX,Y)] = [7 [ h(z,y) - f(x,y) dydz inthe continuous case.
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Marginal distribution of X found from ajoint distribution of X and Y":
If X and Y have ajoint distribution with joint density or probability function f(z, y), then the
marginal distribution of X has a probability function or density function denoted fx (), which
Isequal to
fx(@) =3 f(z,y) inthedisyetecase, andisequal to fx(z) = [ f(z,y)dy
Yy

in the continuous case. The density function for the marginal distribution of Y isfoundin a
similar way:

W) =X f@y) o fyly) = [, f(e,y)dz
If the cumulative distribution function of the joint distribution of X and Y is F'(z, y), then
Fx(z)= limF(z,y) and Fy(y)= limF(z,y).
Yy—00 Tr—00

This can be extended to define the marginal distribution of any one (or subcollection) variablein
amultivariate distribution.

Independence of random variables X andY: Random variables X and Y with cumulative
distribution functions Fx (x) and Fy (y) are said to be independent (or stochastically
independent) if the cumulative distribution function of the joint distribution F'(z, y) can be
factored in the form

F(z,y) = Fx(x) - Fy(y) forall (z,y).
This definition can be extended to a multivariate distribution of more than 2 variables.
If X and Y areindependent, then f(z,y) = fx(z) - fy(y) , (but the reverse implication
isnot always true, i.e. if the joint distribution probability or density function can be factored in
theform f(z,y) = fx(x) - fy (y) then X and Y are usually, but not always, independent).

Conditional distribution of Y given X = z: Suppose that the random variables X and Y have
joint density/probability function.f(, %) , and the density/probability function of the marginal distribution

of Xis Iy (). The density/probability function of the conditional distribution of Y given X = - is

1,0 =1 i k@) #0,

The conditional expectation of Y given X =z is E[Y|X =z] = [* y- fy;x(y|X = z)dy in
the continuous case, and E[Y|X = x] = Y vy - fyx (y|X = ) inthe discrete case.

If X and Y areindependent random variables, then

f (@) =f (@) and ] W) =/ ).

Covariance between random variables X and Y": If random variables X and Y arejointly
distributed with joint density/probability function f(z, y), then the covariance between X and Y/
is CovX,Y] = E[(X - E[X])(Y - E[Y])] = E[(X — px)(Y — py)] .

Notethat Cov[X, X] = Var[X].
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Coefficient of correlation between random variables X and Y:
The coefficient of correlation between random variables X and Y is

-1 < p, = M <1
X,Y O'X Oy

where o, and o, arethe standard deviationsof X and Y respectively.

Moment generating function of ajoint distribution: Given jointly distributed random
variables X andY’, the moment generating function of the joint distribution is

]Wx,y(tutz) — E[ellXﬂzY] .

This definition can be extended to the joint distribution of any number of random variables.

Multinomial distribution with parametersn, p;, s, - . ., b (Wheren isapositive
integerand 0 < p; <1forali=1,2,...,k and py + po + ---pr = 1):
Suppose that an experiment has & possible outcomes, with probabilities p;, ps, ..., pr
respectively. If the experiment is performed n successive times (independently), let X; denote
the number of experiments that resulted in outcome 4, so that

X +X ++X =n
The multivariate probability function is

f(xl o xk) _ n! _px1 _pCCQ_“pl'k
and y L2y ey zlxol e xy) 1 2 k

EX;) =np;, Var[X;] =npi(1 —p), Cov[X;X;| = —np;p; .

For example, the toss of afair dieresultsin one of k£ = 6 outcomes, with probabilities
D = % for i1 =1,2,3,4,5,6. If thedieistossed n times, then with

X, = #of tosses resulting in face "i" turning up,

the multivariate distribution of X, X, , ..., X, isamultinomial distribution.

Some results and formulasreated to this section are:

(i) E[m(X,Y)+ h(X,Y)] = E[h(X,Y)] + E[hy(X,Y)], and in particular,
EX+Y]=EX]+E[Y] and E[>_X;] = > E[X]]

(i) lim Fz,y) = Iim F(z,y) =0

y——00

(iii) Plzy < X <@) Ny <Y < )] = F(xa,y2) — Fza, 1) — F(x1,2) + F(21,0)

(iv) PX<a)n(Y <y)l=F (2) + F (y) = F(z,y) < 1.
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(v) If X andY areindependent, then for any functions g and h,
Elg(X) - h(Y)] = Elg(X)] - E[A(Y)]

and in particular, .

E[X Y] = E[X]- E[Y]

(vi) The density/probability function of jointly distributed variables X and Y can be
written in the form

fz,y) = frixWX =2)- fx(x) = fxy (@Y =9) - fr(y)

Cov[X,Y]=E[X -Y] - ux - py = E[XY] - E[X]- E[Y] = Cov[Y, X]-
If Xand Y areindependent, then E[X -Y]| = FE[X]-E[Y] and Cov[X,Y]|=0.

and Cov[X,Y] = 0. Forconstants a, b, ¢, d, e, f andrandom variables X, Y, Z and W,
Cov[aX +bY +c, dZ + eW + f]
= adCov[X, Z] + aeCov[ X, W] + bdCov]Y, Z] + beCov[Y, W]
(viii) For any jointly distributed random variables X andY, —1 < pyxy <1
(iX) Var[ X+ Y] =E[(X+Y)) — (E[X +Y])?
= E[X?+2XY +Y? — (E[X] + E[Y])?
= E[X?]| + E[2XY] + E[Y?] — (F[X])? - 2E[X]E[Y] — (E[Y])?
=Var[X]+ Var[Y]+2 - Cov[X,Y]
If X and Y areindependent, then Var[X + Y] = Var[X]|+ VarlY].

Forany X,Y, Var[aX +bY + ¢| = a*Var[X] + 0*Var[Y] + 2ab - Cov[X,Y]
(X) MX’y(tl,O) = E[eth] = Mx(tl) and Mij (O,tg) = E[@tQY] = My (tg)

(xi) - My (b, 1) — BIX]) 2 Myy (1) = E[Y]
’ t1=ty=0 = t1=to=0

o" ts ) ) '
gham My ()|, = EX7 Y]

(xii) If
M(ti,ts) = M(t:,0) - M(0,t,) |

for ¢, and ¢, in aregion about (0,0), then X andY” are independent.
(xiii) If Y =aX +b then My (t) = " Mx(at) .
(xiv) If X andY arejointly distributed, then for any y, E[X|Y = y| depends on y, say
E[X|Y =y] = h(y) . Itcanthen beshownthat E[h(Y)] = E[X]; thisismore
E[EIX|Y]] = E[X].
It can also be shown that
Var(X] = E[Var[X|Y] ]+ Var[ E[X|Y]].
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(xv) A random variable X can be defined as a combination of two (or more) random
variables X and X5, defined in terms of whether or not a particular event A occurs.

X, if event A occurs (probability p)
{ X, if event A does not occur (probability 1—p)

1 if A occurs(prob.p)

Then, Y can be the indicator random variable I, = { _
0 if A doesn't occur (prob.1—p)

Probabilities and expectations involving X can be found by "conditioning” over Y':
P[X < ¢] = P[X < c|Aoccurs| - P[A occurs| + P[X < ¢|A’ occurs] - P[A” occurs]
= P[X; <c]-p+P[X; <] (1-p),
E[X'] = E[X]]-p+ E[X5]- (1 - p), Mx(t) = Mx,(t) - p+ Mx,(t) - (1 - p)

Thisisreally anillustration of amixture of the distributions of X and X5, with
a=p and as =1—p.
As an example, suppose there are two urns containing balls - Urn | contains 5 red and 5
blue ballsand Urn Il contains 8 red and 2 blue balls. A dieistossed, and if the number
turning up is even then 2 balls are picked from Urn |, and if the number turning up is
odd then 3 balls are picked from Urn Il. X isthe number of red balls chosen. Event A
would be A = dietossiseven. Random variable X; would be the number of red
balls chosen from Urn | and X» would be the number of red balls chosen from Urn 11, and
since each urnisequally likely to be chosen, o = as = % .
(xvi) If X and Y have ajoint distribution which is uniform on the two dimensional
region R (usually R will be atriangle, rectangle or circlein the (x, y) plane), then the
conditional distribution of Y given X = x hasauniform distribution on the line
segment (or segments) defined by the intersection of theregion R with theline X = x.
The marginal distribution of Y might or might not be uniform.

Example 116: If f(z,y) = K (2% + y?) isthe density function for the joint distribution of the
continuous random variables X and Y defined over the unit square bounded by the points (0, 0),
(1,0), (1,1) and (0, 1), find K.

Solution: The (double) integral of the density function over the region of density must be 1, so
that 1= [} [ K(2*+y)dyde=K-2 »K=35. O

Example 117: The cumulative distribution function for the joint distribution of the continuous

random variables X and Y is F(z,y) = (.2)(3z3y + 22%9?), for 0 <z <land 0<y <1.
- 11

Find f(§7 5) .

Solution: f(x,y) = %F(way):(~2)(9$2+8xy)"f(%ﬂ%): %‘ -
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Example 118: X and Y are discrete random variables which are jointly distributed
with the following probability function f(x, y):

X
—1 0 1
y o T 1o |t
-1l 5|5 |3
Find E[X -Y].
Solution: E[XY] =YY ay- f(z,y) = (- 1)(1) (%) + (- 1><o><$>+< 1)(-1)(5)
+(0)(1)(5) + (0)(0)(0) (
1
g—l—

—~
—

Example 119: Continuous random variables X and Y have ajoint distribution with density

function f(z,y) = w intheregion boundedby y =0, x =0

and y = 2 — 2z. Find the density function for the marginal distribution of X for 0 < = < 1.

Solution: Theregion of joint density isillustrated in the graph below. Note that X must bein the

interval (0, 1) and Y must beintheinterval (0,2). Since fx(z) = [ w f(z,y) dy , we note that
givenavalueof x in (0, 1), the possible values of y (with non-zero density for f(z, y)) must satisfy
0<y<2— 2z, sothat

fx(z) = [ f@y)dy = [ 2”73(2+xy)d =3(1—=2)2. O

Example 120: Supposethat X and Y are independent continuous random variables with the

following density functions: fx(z) =1 for0 <z <1 and f.(y) =2yfor 0 <y <1.
Find PY < X].

Solution: Since X and Y are independent, the density function of the joint distribution of X and
Yis f(z,y) = fx(z) - fy(y) = 2y, andis defined on the unit square. The graph below

right illustrates the region for the probability in question. P[Y' < X] = [ ["2ydyde = 3 O
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Example 121: Continuous random variables X and Y have ajoint distribution with density
function f(z,y) =2’ + L for 0<az <l and 0<y<2.

Find P[X > [V > 1].

Pl(X>Hn(Y>3)]

Solution: P[X > %|Y > %] —

Py >3]
P[(X > %)ﬂ f1/2f1/2 + 3 dydx = 43.
PlY >§ :f1/2fY ) dy f1/2ﬂ) (z,y) du] dy—flmfo ?y]dxdy:%
- PIX> V> i) == O

Example 122: Continuous random variables X and Y have ajoint distribution with density
function f(z,y) = §(sin §y)e ™ for 0 <z <oo and 0 <y < 1.

Find P[X > 1]Y = %] .

_1
Solution:  P[X > 1Y = %] _ P[(X>1)0(Y72)].

Fr(3)
P[(X>1)ﬂy %) fl dl'_ ) 2(82,”4) 7Idl’=ﬂ—T\/§-@71_
(3= [ fe, Yy de = fooo2(sm Jerdr = Y2
- P[X>1|Y:%]:e*1_ O

Example 123: X isa continuous random variable with density function fx(x) =z + % for
0 <z < 1. Xisasojointly distributed with the continuous random variable Y, and the
conditional density function of Y given X =z is

AuxX=z="4 ., o0o<z<l, 0<y<l.

. x+§
Find f (y) for 0 <y < 1.
Y
Solution: f(z,y) = f(ylz) - fx(x) = ¥ - (x+ 2)—$+y Then, fy(y) = [y f(z,y) dm—y+‘ a

1‘-1—5

Example 124: Find Cov[X,Y] for thejointly distributed discrete random variablesin
Example 118 above.
Solution: Cov[X Y] = E[XY]| - E[X]- E[Y]. In Example 118 it was found that
E[XY] = The marginal probabllltyfunctlon for Xis P[X =1] = % + % + % = % ,
P[X =0]=3 and P[X = — 1] = 5, andthemean of X is
E[X] = (1)(5) + (0)(%) +(-1)(3) =73
In asimilar way, the probabilityfunction of Yisfoundtobe P[Y =1] = % , PIlY =0] = % ,
and PlY = — 1] = 18 , withameanof EY]|= — .
Then, Cov[X,Y] =1 - (1)(-L)=1. O

6
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Example 125: The coefficient of correlation between random variables X andY is %
and 0% =a, o} =4a . Therandom variable Z isdefinedtobe Z = 3X —4Y , and
itisfoundthat 0% = 114 . Find a.

Solution: o, = Var[Z] = 9Var[X] + 16Var[ ] —2-(3)(4) Cov[X,Y].
Since Cov[X,Y] =p[X,Y] -0ox oy =+ \/a-/4a= %a , it follows that
11420%:9a—|—16(4a)—24(23—a):57a—>a—2 O

Example 126: Supposethat X and Y are random variableswhosejoi nt distribution has moment
generating function M (t,,t,) = (1 by = eti’ + 2 )10, for all real ¢; and,.
Find the covariance between X and Y.
Solution: Cov[X, Y] = FE[XY]| - E[X]- E[Y].
EIXY) = 525 MXy(tl,tQ)‘ o
-t —=Y1 2

= (10)(9)(ge" + 2e + 2)*(3e") (Ze)

E[X] = at My ()],
t)],

135

ti=ty=0 16 '
= (10)(ge" + ge + §)°(

1
4
Ly = 0)(Get + et + 1) (5e)

__E
6 -H

=ty=0

- Cov[X,Y] = 11365 (é)(%

Example 127: Suppose that X has a continuous distribution with p.d.f. fx(x) = 2z
ontheinterval (0,1),and fx(x) =0 elsewhere. Supposethat Y isa continuous random
variable such that the conditional distribution of Y given X = z isuniform on theinterval (0, x).
Find the mean and variance of Y'.

Solution: This problem can be approached in two ways.

(i) Thefirst approach isto determine the unconditional (marginal) distribution of Y. Weare
given fx(z)=2x for 0 <z <1, and fy‘X(y|X:x):% for 0<y<zx.
Then,f(x,y):f(y|x)-fx(m):%-21::2 for0<z<ladO<y<czx.

The unconditi onal (marginal) distribution of Y™ has p.d.f.
fry) = [~ fxyd:z:—f 2dr=2(1—y) for 0 <y <1(and fy(y)isO
elsewhere). Then E[Y] = [jy - 2(1-y)dy=1, E[Y?] = [}y’ 2(1-y)dy = ,

and VarlY]=E[Y?] - (E[Y])?=¢ - (3) =15
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(if) The second approach isto usetherelationships E[Y] = E[ E[Y|X]] and

VarlY] = E[Var[Y|X]]+ Var[ E[Y|X]].
From the conditional density fllX=12)= l for 0 <y < x,wehave

BY|X=a]= [y -1dy=2 sotha E[Y|X] 2, and, since fx(z) = 2z,
E[E[Y|X]] = = [ % 2zdx =% = E[Y] .

Inasimilar way, Var[Y|X = x] [Y2|X =z — (EY|X = a:])

where E[Y2]X —a] = [Ty L dy — % sothat E[Y?|X] =%, andsince

E[Y|X] =4 we haveVar[Y|X] - ()2—‘)2 - X

Then E[Var[Y]X]] —BX)1= 1o 2xd:r: — L, and
Var(BIY|X]) = Varl%] = 1Varm =L (Bl - (B = b - 2= 4
so that

E[VarlY|X]]+ Var[E]Y|X]] = & + & = = =Var[Y] O
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FUNCTIONSAND TRANSFORMATIONS OF RANDOM VARIABLES

Distribution of a function of a continuous random variable X: Supposethat X isa
continuous random variable with p.d.f. fx(x) and c.d.f. Fix(x), and suppose that u(z) isaone-
to-one function (usually u is either strictly increasing, such as u(z) = 3, €7, \/E orinx,oru
isstrictly decreasing, such as u(z) = e~*). Asaone-to-one function, » has an inverse function
v, sothat v(u(x)) =z . Thentherandom variable Y = u(X) (Y isreferred to asa

transformation of X) hasp.df. fy(y) found asfollows: fy(y) = fx(v(y)) - |V (y)] -
fy () = fx (v(y)) - [v'(y)]

If u astrictly increasing function, then
Fy(y) = P[Y <y] = Plu(X) < z] = P[X < v(y)] = Fx(v(y)) -

Distribution of afunction of a discrete random variable X: Suppose that X isadiscrete
random variable with probability function f(z). If u(x) isafunction of z,
and Y isarandom variable defined by the equation Y = u(X) , then Y isadiscrete random

variable with probability function g(y) = > f(x) - given avalue of y, find all values of x for

which y = u(x) (say u(xy) = u(zy) = L2 u(z;) = y), and then g(y) isthe sum of those

f(x;) probabilities.

If X and Y are independent random variables, and « and v are functions, then the random
variables u(X) and v(Y) areindependent.

Thedistribution of a sum of random variables:
() If X;and X, arerandom variables, and Y = X; + X5 , then
ElY] = EXi]+ E[X,] and Var]Y] = Var[Xy] + Var[Xy] + 2Cov[ X5, X,

(i) If X; and X, are discrete non-negative integer valued random variables with joint
probability function f(xy, ), thenfor aninteger £ > 0,

k
P[Xl —|—X2 = k?] = Z f(l‘l./k? —.CL‘l)
:1‘1:0
If X, and X, are independent with probability functions f; (x;) and f»(x3), respectively, then
k
P[Xl —|—X2 = k] = Z fl(.’lfl) . fz(k — .Ll)
1’110

(thisis the convolution method of findingthe distribution of the sum of independent discrete
random variables).
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(iii) If X, and X, are continuous random variables with joint density function f(zy, z5)
then the density functionof Y = X; + X5 is

L) =[5 fle,y—z)de,
If X, and X, are independent continuous random variables with density functions
fi(x1) and fy(z5), then the density functionof YV = X; + X, is
fr(y) = f_oooofl(xl) faly — wy) dmy

(iv) If Xi, X5, ..., X,, arerandom variables, and the random variable Y is defined to be

Y =YX ,then E[Y] =3 E[X)] and
i=1 i=1
VarlY] = Y Var(X;] +2) > Cov[X;, X]].
i=1 i=1j=i+1
If X1, X, ..., X, aremutually independent random variables, then

VarlY] = S Var[Xi] and My (t) = [[Mx,(t) = My, (t) - My, (t)---Myx. (¢)
i=1 i=1

Vv) If Xy,X,,...,X,and Y},Y;, ..., Y, arerandom variablesand
ai,0a9,...,0n, b, ¢, o, ..., ¢y @Nd d are constants, then

m m

Cov[d a;iX;+b,) ¢;Y;+dl =) > aic;Cov[X;,Y]]

=1 J=1 i=1 j=1

(vi) The Central Limit Theorem: Supposethat X isarandom variable with mean p

and standard deviation o and suppose that X, X5, ..., X,, are n independent random
variables with the same distributionas X. Let YV, = X; + X5 +---+ X,,. Then
E[Y,] = np and Var[Y,] = no? , and as n increases, the distribution of Y,, approaches
anormal distribution N (nu, no?). Thisisajustification for using the normal
distribution as an approximation to the distribution of a sum of random variables.

(vii) Sumsof certain distributions: Supposethat X, X», ..., X; areindependent random variablesand
k
Y =Y X,

=1

distribution of X;

distribution of Y

Bernoulli B(1, p)
binomial B(n;, p)
geometric p

negative binomia n,;, p
Poisson \;

N(pi, 07)

binomial B(k, p)
binomia B(>_ni,p)
negative binomia k&, p
negative binomia $"n;, p
Poisson > \;

N (3 pi, 307
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Example 128: Therandom variable X has an exponentia distribution with amean of 1. The
random variableY isdefinedtobe Y = 2In X . Find fy(y), thep.d.f. of Y.

Solution: Fy(y) = P[Y <y =PRInX <y|=P[X <e¥/?]=1— ¢

- fry) = Fry) = 4 (L") = g2 e,
Alternatively, since Y =2in X (y = u(z) = 2Inx,and In isasdtrictly increasing function
withinverse = = v(y) = e¥/?), and X = €'/2, it follows that

fr(y) = fx(e?)- ‘% ey/Q‘ =yl =

Example 129: Supposethat X and Y are independent discrete integer-valued random variables
with X uniformly distributed on the integers 1 to 5, and Y having the following probability function

fr0)=3 fH1L)=5 fB)=.2.
LetZ =X+Y . Find P[Z =5].

Solution: Usingthefact that fx(x) = .2 for = =1,2,3,4,5, and the convolution method for
independent discrete random variables, we have

fz(5) = i%fx(i) fr(5—1)
= (0)(0) + (:2)(0) + (:2)(2) + (.2)(0) + (2)(.5) + (2)(2) = .20. O

Example 130: X; and X, areindependent exponential random variables each with a mean of 1.
Find P[Xl + X5 < 1]

Solution: Using the convolution method, the density functionof Y = X; + X, is

fr) = fx. () fr,(y—t)dt = [let-e W Ddt =ye,
o that Y1

PXi+ Xy <1]=P[Y <1] = folye_ydy =[—ye ¥ —eY] = 1—2et
(the last integral required integration by parts). O !

Example 131: Given n independent random variables X, X, ..., X,, each having the same
variance of o2, and defining
U=2Xi+Xo+ -+ Xp1 ad V=X +X,+ - +2X .

find the coefficient of correlation between U and V.

: CoulU,V
Solution: pyy = (;UU[U"/ ] ;o =MA+1+1+-+1)0?=(n+2)0* =0.

SincetheX 's are independent, ifi - j then Cov[X , X ] =0 Then, noting that Cov[W, W] = Var[W],
we have

CovlU,V] = Cov[2X, Xo] + Cov[2Xy, X3] + - + Cov[ X, 1,2X,]
=Var[Xs] + Var[X3] + -+ Var[X, 1] = (n — 2)0? .

(n—2)o? n—2
P 5 — . D
(n+2)0° n+2

Then, pyv =
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Example 132: Independent random variables X, Y and Z areidentically distributed. Let
W = X + Y. The moment generating function of W is My, (¢) = (.7 + .3¢")°.
Find the moment generating functionof V =X +Y + Z.

Solution: For independent random variables,
Mx .y (t) = Mx (t) - My (t) = (.7 + .3¢")® . Since X and Y haveidentical
distributions, they have the same moment generating function. Thus,
My (t) = (.7 + .3¢")? ,and then My (t) = Mx(t) - My (t) - Mz (t) = (.7 + .3¢')? .

Alternatively, note that the moment generating function of the binomia B(n, p) is
(1—p+ pe")™ . Thus, X +Y hasa B(6,.3) distribution, and each of X, Y and Z has
a B(3,.3) distribution, so that the sum of these independent binomial distributionsis
B(9,.3) ,withm.g.f. (.7+ .3¢")°. O

Example 133: The birth weight of malesis normally distributed with mean 6 pounds, 10
ounces, standard deviation 1 pound. For females, the mean weight is 7 pounds, 2 ounces with
standard deviation 12 ounces. Given two independent male/female births, find the probability
that the baby boy outweighs the baby girl.

Solution: Let random variables X and Y denote the boy's weight and girl's weight, respectively.
Then, W = X — Y hasanormal distribution with mean

10 -2 _ 1 i 2 2 _ 9 _ 25
636 — 716 = 2Ib.andvarlancecfX—l—ch_l-i-m_16.
W—(—1 _(—1
Then, PIX > Y] = PIX v >0 = P[22 o~ 1 prz s g

V/25/16 > V/25/16
where Z has standard normal distribution (W was standardized). Referring to the
standard normal table, this probability is .34 . O

Example 134: If the number of typographical errors per page type by a certain typist follows a
Poisson distribution with amean of )\, find the probability that the total number of errorsin 10
randomly selected pagesis 10.

Solution: The 10 randomly selected pages have independent distributions of errors per page.
The sum of m independent Poisson random variables with parameters

A1, Ag...., A, has aPoisson distribution with parameter > ); . Thus, the total number
of errorsin the 10 randomly selected pages has a Poisson distribution with parameter 10\.

The probability of 10 errorsin the 10 pagesis e*lml(é‘ox)lo : O



