
Final Exam, Semester I, 1446
Department of Mathematics, College of Science, KSU

Course: Math 481 Marks: 40 Duration: 3 Hours

immediate

Question 1 [3+2+4 points]

1. Prove that if f is continuous on [a, b], then f ∈ R(a, b). (See the book by Al-Gwaiz.)

2. Provide an example of a function that is Riemann integrable but not continuous.

Answer: An example of a function that is Riemann integrable but not continuous is
the function, defined as:

f(x) =

{
1 if x ∈ [0, 1/2],

0 if x ∈ (1/2, 1].

Why is this function Riemann integrable?

� The function is bounded because for all x, f(x) ∈ [0, 1].

� The set of discontinuities, {1/2}, has measure zero. Specifically, it is a finite set,
and finite sets have Lebesgue measure zero.

� According to the Lebesgue Criterion for Riemann Integrability, a function is Rie-
mann integrable if it is bounded and its set of discontinuities has measure zero.

3. Suppose (fn) is a sequence of Riemann integrable functions that converges uniformly
on [a, b] to a function f . Prove that f is Riemann integrable on [a, b] and that:∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

(See the book by Al-Gwaiz.)

Question 2 [4+4 points]

1. The functions fn on [−1, 1] are defined by fn(x) =
x

1 + n2x2
. Show that the pointwise

limit of fn is differentiable, but the equality f ′(x) = limn→∞ f ′
n(x) does not hold for all

x ∈ [−1, 1]. Solution: Step 1: Pointwise limit of fn(x)
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� For x = 0:
fn(0) = 0.

� For x ̸= 0, as n → ∞:

fn(x) =
x

1 + n2x2
→ 0.

Thus, the pointwise limit is the constant function:

f(x) = 0, ∀x ∈ [−1, 1].

Step 2: Differentiability of f(x) Since f(x) = 0, its derivative is:

f ′(x) = 0, ∀x ∈ [−1, 1].

Step 3: Derivative of fn(x) Using the quotient rule:

f ′
n(x) =

1− n2x2

(1 + n2x2)2
.

Step 4: Limit of f ′
n(x)

� For x = 0:
f ′
n(0) = 1, lim

n→∞
f ′
n(0) = 1.

� For x ̸= 0, as n → ∞:

f ′
n(x) → 0 because n2x2 → ∞.

Step 5: Comparison

� f ′(x) = 0 for all x.

� limn→∞ f ′
n(x) = 1 at x = 0, so f ′(0) ̸= limn→∞ f ′

n(0).

� For x ̸= 0, f ′(x) = limn→∞ f ′
n(x) = 0.

Conclusion: The pointwise limit f(x) is differentiable, but f ′(x) ̸= limn→∞ f ′
n(x) at

x = 0.

2. Prove that the series
∞∑
n=1

(−1)n
x2 + n2

n3

converges uniformly on any bounded interval, but does not converge uniformly on R.
Solution:

Since the series is even in the sense that its terms involve x2, it suffices to show that
the series converges uniformly on the interval [0, a], where a > 0. To do this, we will
apply Dirichlet’s Test for Uniform Convergence.
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Dirichlet’s Test states that if we have a series of the form

∞∑
n=1

un(x)vn(x),

where:

� un(x) is a monotonically decreasing sequence that tends to zero uniformly on
[0, a],

� vn(x) is a sequence such that the partial sums SN =
∑N

n=1 vn are bounded for all
N , and for all x ∈ [0, a],

then the series
∑∞

n=1 un(x)vn(x) converges uniformly on [0, a].

We choose:

vn(x) = (−1)n and un(x) =
x2 + n2

n3
.

We now verify the two conditions of Dirichlet’s Test.

Condition 1: Monotonicity of un(x) and Uniform Limit Condition

-un is monotonically decreasing on [0, a]
- We now check the behavior of un(x). Since

un(x) =
x2 + n2

n3
≤ a2 + n2

n3
for x ∈ [0, a],

it follows that un(x) → 0 uniformly as n → ∞, since

a2 + n2

n3
=

a2

n3
+

1

n
.

Both terms go to zero as n → ∞, and the convergence is uniform for x ∈ [0, a].

Condition 2: Boundedness of Partial Sums of vn(x)

We check the partial sums of vn(x). We know that vn(x) = (−1)n, so the partial sums
are alternating sums of ±1. Thus, for any N ,∣∣∣∣∣

N∑
n=1

vn(x)

∣∣∣∣∣ ≤ 2,

which is bounded. Therefore, both conditions of Dirichlet’s test are satisfied, and we
conclude that the series converges uniformly on the interval [0, a].

Next, we show that the series does not converge uniformly on R. To do this, we will
show that the general term does not converge uniformly to zero. Indeed,

sup
x∈R

∣∣∣∣x2 + n2

n3

∣∣∣∣ ≥ sup
x∈R

x2

n3
≥ 1 for x = n3/2.

Thus, the general term does not uniformly converge to zero on R, and the series does
not converge uniformly on R.
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Question 3 [2+2+4 points]

(a) Define a measurable set and a measurable function.(See the Book of AlGwaiz)

(b) Given E such that m∗(E) = 0, prove that E is a measurable set.

Solution: To prove that E is a measurable set, we need to show that for every
set A ⊂ R, the following equality holds:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

First, we observe that the inequality

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec)

is trivially satisfied due to the subadditivity of the outer measure. This follows
because:

A = (A ∩ E) ∪ (A ∩ Ec).

Now, we prove the reverse inequality. Since A∩E ⊆ E, and given thatm∗(E) = 0,
we have:

m∗(A ∩ E) ≤ m∗(E) = 0.

Therefore, we conclude:
m∗(A ∩ E) = 0.

Next, we observe that A ∩Ec ⊆ A, so by the monotonicity of the outer measure,
we have:

m∗(A ∩ Ec) ≤ m∗(A).

Thus, combining these results, we obtain:

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

This shows that E is a measurable set, as required.

(c) Consider the function:

f(x) =


1

x2
, if x > 1,

0, if x ≤ 1.

i. Is this function Riemann integrable on the interval [1, a] for all a > 1?
Solution:
A function f(x) is Riemann integrable on [1, a] for a > 1 if it is bounded and
its discontinuities form a set of measure zero. If f(x) is continuous or has
only a finite number of discontinuities on [1, a], it is Riemann integrable.

ii. Show that this function is Lebesgue integrable on the interval [1,∞) and∫
[1,∞)

f(x) dm = 1.

4



Solution: The function f(x) is non-negative and measurable. To show that
f(x) is Lebesgue integrable on [1,∞), we check whether∫

[1,∞)

|f(x)| dm < ∞.

Let fn(x) = χ[1,n](x)
1
x2 , where χ[1,n] is the characteristic function of the in-

terval [1, n]. Clearly, fn(x) ↗ f(x) as n → ∞ by the Monotone Convergence
Theorem, we can write:∫

[1,∞)

f(x) dm = lim
n→∞

∫
[1,n]

f(x) dm.

Since fn(x) =
1
x2 on the interval [1, n], we have:∫

[1,n]

1

x2
dm =

∫ n

1

1

x2
dx.

The integral of 1
x2 is straightforward to compute:∫ n

1

1

x2
dx =

[
−1

x

]n
1

= 1− 1

n
.

Taking the limit as n → ∞, we get:

lim
n→∞

(
1− 1

n

)
= 1.

Since the integral is finite, f(x) = 1
x2 is Lebesgue integrable on [1,∞), and

we conclude: ∫
[1,∞)

f(x) dm = 1.

This completes the proof.

Question 4 [2+3 points]

(a) Provide an example of a function that is Lebesgue integrable but not Riemann
integrable.

(b) Evaluate the limit of the following integral:

lim
n→∞

∫ 1

0

nx

1 + n2x2
dx.

Solution:

Define:

In =

∫ 1

0

nx

1 + n2x2
dx.
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For each x ∈ [0, 1], the integrand fn(x) =
nx

1+n2x2 satisfies fn(x) → 0 as n → ∞.

Moreover, fn(x) ≤ 1
2
, since the maximum value of fn(x) occurs at x = 1

n
, where

fn
(
1
n

)
= 1

2
. By the Bounded Convergence Theorem, we can exchange the limit

and the integral, yielding:

lim
n→∞

In =

∫ 1

0

lim
n→∞

fn(x) dx =

∫ 1

0

0 dx = 0.

Thus:

lim
n→∞

∫ 1

0

nx

1 + n2x2
dx = 0.

Question 5 [3+3+2+2 points]

(a) Prove that

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−2x dx = 1.

Solution:

Define:

In =

∫ n

0

(
1 +

x

n

)n

e−2x dx.

Step 1: Majorization For all x ≥ 0, we have:(
1 +

x

n

)n

≤ ex.

Thus, the integrand satisfies:(
1 +

x

n

)n

e−2x ≤ exe−2x = e−x.

The function e−x is integrable on [0,∞) because:∫ ∞

0

e−x dx = 1.

Step 2: Pointwise Convergence For fixed x ∈ [0,∞), as n → ∞, we have:(
1 +

x

n

)n

→ ex.

Thus, the integrand
(
1 + x

n

)n
e−2x converges pointwise to:

exe−2x = e−x.
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Step 3: Applying the Dominated Convergence Theorem Since the integrand is
dominated by e−x, which is integrable on [0,∞), we can apply the Dominated
Convergence Theorem. Hence:

lim
n→∞

In =

∫ ∞

0

e−x dx = 1.

Conclusion:

lim
n→∞

∫ n

0

(
1 +

x

n

)n

e−2x dx = 1.

(b) If p, q > 0, prove that ∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
.

nx

1 + n2x2
= nx

∞∑
k=0

(−1)k(n2x2)k.

Using the series expansion:

xp−1

1 + xq
=

n∑
k=0

(−1)kxp−1+kq +
(−1)n+1xp−1+q(n+1)

1 + xq
,

we integrate over [0, 1]:∫ 1

0

xp−1

1 + xq
dx =

∫ 1

0

n∑
k=0

(−1)kxp−1+kq dx+

∫ 1

0

(−1)n+1xp−1+q(n+1)

1 + xq
dx.

For the first term:∫ 1

0

n∑
k=0

(−1)kxp−1+kq dx =
n∑

k=0

(−1)k
∫ 1

0

xp−1+kq dx =
n∑

k=0

(−1)k

p+ kq
.

For the remainder term:

Rn =

∫ 1

0

(−1)n+1xp−1+q(n+1)

1 + xq
dx,

we start by bounding the integrand. Since 1
1+xq ≤ 1 for all x ∈ [0, 1], it follows

that: ∣∣∣∣(−1)n+1xp−1+q(n+1)

1 + xq

∣∣∣∣ ≤ 1, for all x ∈ [0, 1].

The sequence:
(−1)n+1xp−1+q(n+1)

1 + xq

converges pointwise to 0 almost everywhere on [0, 1] as n → ∞.
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By the Dominated Convergence Theorem, the integral of the remainder term goes
to 0 as n → ∞. Therefore:∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
.

Then, we can conclude the following:

i.

log 2 =

∫ 1

0

1

1 + x
dx =

∞∑
n=0

(−1)n

1 + n
.

ii.
π

4
=

∫ 1

0

1

1 + x2
dx =

∞∑
n=0

(−1)n

2n+ 1
.

Then, we can conclude the following:

i.

log 2 =

∫ 1

0

1

1 + x
dx =

∞∑
n=0

(−1)n

1 + n
.

Explanation: Setting p = 1 and q = 1 in the derived formula:∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
,

we get: ∫ 1

0

1

1 + x
dx =

∞∑
n=0

(−1)n

1 + n
.

The integral
∫ 1

0
1

1+x
dx is the standard representation of log 2, so:

log 2 =
∞∑
n=0

(−1)n

1 + n
.

ii.
π

4
=

∫ 1

0

1

1 + x2
dx =

∞∑
n=0

(−1)n

2n+ 1
.

Explanation: Setting p = 1 and q = 2 in the derived formula:∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n

p+ nq
,

we get: ∫ 1

0

1

1 + x2
dx =

∞∑
n=0

(−1)n

2n+ 1
.

The integral
∫ 1

0
1

1+x2 dx is the standard representation of arctan(1), and since
arctan(1) = π

4
, we conclude:

π

4
=

∞∑
n=0

(−1)n

2n+ 1
.

8


