King Saud University, College of Science Department of Mathematics Midterm Exam 1447 H - (2025 - 2026 G)

First Midterm Exam of Math 5301.

Time allowed: 2 Hours

Given a simple and finite graph G = (V; E) of order $n \ge 2$. Let $x \in V$. We denoted, the complement of G by $\overline{G} = (V, \overline{E})$, and the degree of x in the graph G by $d_G(x)$.

Question 1. Show that:

- 1. If the graph G is self complementary, then its order n satisfies: n = 4p or n = 4p + 1, where $p \in \mathbb{N} = \{1, 2, 3,\}$.
- 2. Find the values of n for the which a path P_n (resp. a cycle C_n) is self-complementary.
- 3. (a) If $\exists x \in V$ such that $d_G(x) \in \{0, n-1\}$, then G is not a self complementary graph.
 - (b) If G is a self complementary graph, then $\forall x \in V$, we have $d_G(x) \in \{1, ..., n-2\}$.
 - (c) Find all self complementary graphs of order $n \leq 7$.

5 Question 2. Assume that: there are two vertices u and v in V, such that the length for any uv-path is greater than 3. Prove the following assertions:

- 1. $N_G(u) \cap N_G(v) = \emptyset$.
- 2. $N_G(u) \cup N_G(v) \subseteq V \setminus \{u, v\}$.
- 3. $d_G(u) + d_G(v) \le n 2$.
- 4. $|E| \leq \frac{n(n-2)}{2}$.
- 5. $|\overline{E}| \geq \frac{n}{2}$.

Question 3. Consider the two sequences:

- $D_1 = (1, 1, 2, 2, 3, 5, 6, 6)$
- $D_2 = (1, 1, 3, 3, 4, 4, 6, 6).$
- 1. Show that D_1 is not graphic.
- 2. (a) Does there exist a simple bipartite graph G, such that $DEG(G) = D_2$?
 - (b) Show that D_2 is graphic and find all graphs, up to isomorphism, G with $DEG(G) = D_2$.
 - (c) Show that each graph G with $DEG(G) = D_2$ is self complementary graph.

Question 4. Prove the following statement:

(A graph G = (V, E) is connected) if and only if (for every non-empty subset X of V, with $X \neq V$, the edge boundary $\partial(X) \neq \emptyset$).