Basic Rules of Probability and Combinatorial Principles

Basic Set Operations

- $\blacksquare \quad A \cup B = \{x \mid x \in A \text{ or } x \in B \text{ or both}\}; A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- $lack A\subset B=B$ contains all the sample points in event A. It calls A is a subevent of B.
- lacksquare If $A\subset B$, then $A\cap B=A$ and $A\cup B=B$

Basic Probability

- lacktriangle For a sample space S , $\Pr[S]=1$; $\Pr[arnothing]=0$ where arnothing is the null or empty set
- For an event A in the sample space S, $1 > \Pr[A] \ge 0$
- lacksquare For any event A, $\Pr[A] = 1 \Pr[A^{
 m c}]$
- If A and B are two mutually exclusive events, (no sample points in common $A\cap B=\varnothing$), then $\Pr[A\cap B]=0$
- lacksquare General Formula : $\Pr[A \cup B] = \Pr[A] + \Pr[B] \Pr[A \cap B]$
- $\blacksquare \quad \Pr[A \cup B \cup C] = \Pr[A] + \Pr[B] + \Pr[C] \Pr[A \cap B] \Pr[A \cap C] \Pr[B \cap C] + \Pr[A \cap B \cap C]$
- lacksquare If $A\subset B$ then $\Pr[A]\leq \Pr[B]$
- $\qquad \Pr[A] = \Pr[A \cap B] + \Pr[A \cap B^{\operatorname{c}}]$

Conditional Probability

■ For two events A and B, the conditional probability of A given B has occurred is:

$$\Pr[A \mid B] = \frac{\Pr[A \cap B]}{\Pr[B]}$$

- $lacksquare ext{If } A\subset B ext{, then } \Pr[A\mid B] = egin{array}{c} \Pr[A] \ \Pr[B] \ \end{array} ext{ and } \Pr\left[B\mid A
 ight] = 1$
- $\begin{array}{l} \blacksquare \ \Pr[A^{^c}|B] = 1 \Pr[A|B] \ \ \text{ and } \ \text{If } \ A_1 \cap A_2 \ \equiv \varnothing \ \text{ then } \Pr[A_1 \cup A_2 \mid B] \ \equiv \ \Pr[A_1 \mid B] + \Pr[A_1 \mid B] \\ \text{i.e.} \ \ \Pr[\ \cdot \mid B] \ \ \text{is a probability on } \ S. \end{array}$

Baye's Theorem

Let A_1, A_2, \ldots, A_n be a collection of n mutually exclusive and exhaustive events with $\Pr[A_i] > 0$ for $i = 1, \ldots, n$. Then, for any other event B,

$$\Pr[B] \ \equiv \ \ \sum_{i=1}^n \ \ \Pr[B|A_i] \ \Pr[A_i]$$

$$\Pr[A_{\,k} | \ B] \ = \ rac{\Pr[A_k \cap B]}{\Pr[B]} = rac{\Pr[B|A_k] \ \Pr[A_k]}{\sum_{i=1}^n \Pr[B|A_i] \ \Pr[A_i]} \ \ k = 1, \ldots, n$$

Independence

Two events A and B are independent if and only if $\Pr[B \, | \, A] = \Pr[B]$

if and only if $\Pr[A \mid B] = \Pr[A]$

if and only if $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$

Combinatorial Principles

Fundamental Principle of Counting: (also known as the multiplication rule for counting) If a task can be performed in n1 ways, and for each of these a second task can be performed in n2 ways, and for each of the latter a third task can be performed in n3 ways, ..., and for each of the latter a kth task can be performed in nk ways, then the entire sequence of k tasks can be performed in

$$n1 \cdot n2 \cdot n3 \cdot \dots \cdot nk$$
 ways.

Permutations

An ordered sequence of k objects taken from a set of n distinct objects is called a permutation of the objects of size k. P_k^n denotes the number of size k permutations that can be constructed from the n objects.

$$\mathrm{P}^n_k = rac{n!}{(n-k)!}$$

Combinations

An unordered subset of k objects taken from a set of n distinct objects is called a combination.

 $\binom{n}{k}$ denotes the number of combinations of size k that can be formed from n objects.

$$\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$$

$$\binom{n}{n} = 1 \qquad \binom{n}{0} = 1 \qquad \binom{n}{1} = \binom{n}{n-1} = n \qquad \binom{n}{k} = \binom{n}{n-k}$$

Random Variables and Probability Distributions, Expectation and Other Distributional Parameters

Random Variables Probability Distributions and Independence

- Given an experiment with sample space S, a random variable X is any rule that associates a number with each outcome in S.
- The cumulative distribution function (cdf) of a random variable written F(x) is defined for every number x by: $F(x) = \Pr[X \leq x]$
- Two random variables X and Y are independent if

$$\Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B]$$
 for every A and B .

Discrete Random Variables

- A set is described as discrete if its elements can be listed in sequence or if it consists of a finite number of elements.
- The probability distribution or probability mass function of a discrete random variable written p(x) is defined for every number by: $p(x) = \Pr[X = x]$
- The probability mass function p(x) must satisfy: $0 \le p(x) \le 1$ and $\sum_{x} p(x) = 1$.
- The cumulative distribution function (cdf) of a discrete random variable with pmf p(x) written F(x) is defined by:

$$F(x) = \sum_{k \ \leq x} \Pr[X = k\,] \quad ext{ for every number x}$$

• Two random discrete variables X and Y are independent if $\Pr[X=x, Y=y] = \Pr[X=x]$ $\Pr[Y=y]$ for every X and Y.

Continuous Random Variables

- ullet A random variable X is continuous if its set of possible values is an entire interval of numbers.
- The probability distribution or probability density function (pdf) of a continuous random variable written f(x) is :

$$\Pr[a \leq \! X \leq b] = \int_a^b f(x) \; dx$$

- The probability density function f(x) must satisfy: $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) \, dx = 1$.
- The cumulative distribution function of a continuous random variable written F(x) is: $F(x) = \Pr[X \leq x] = \int_{-\infty}^{x} f(y) \ dy$
- We have $\Pr[a \leq x \leq b] = F(b) F(a)$ and F'(x) = f(x)

Expectation, Variance, Standard deviation, Covariance

• The expected value or mean value of a discrete random variable written E(X) or μ_{Y} is:

$$E(X) = \sum_x x \Pr[X = x]$$
 if X is dicrete and $E(X) = \int_{-\infty}^\infty x \; f(x) \; dx$ if X is continuous.

• The variance of a discrete random variable written Var(X) or $\ \sigma_X^2$ is: $Var(X) = E[\left(X - E(X)\right)^2] = E[X^2] - \left[E(X)\right]^2$

$$Var(X) = \sum_x (x - \mu_{_X})^2 \; \Pr[X = x] \; ext{if} \; X \; ext{is dicrete and} \qquad Var(X) = \int_{-\infty}^{\infty} (x - \mu_{_X})^2 \, f(x) \, dx \quad ext{if} \; \; X \; ext{is continuous}.$$

- $\sigma_X = \text{ standard deviation} = \sqrt{Var(X)}$
- Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E(XY)-E(X)E(Y)=Cov(Y,X) If X,Y are independent, then Cov(X,Y)= 0

Rules of expected value:

- For any constant a, E(aX) = aE(X)
- For any random variables X, Y, E(X + Y) = E(X) + E(Y)

Rules of variance:

- For any constants a and b, $Var(aX+b)=a^2[Var(X)]$
- ullet For any random variables $\it{X}, \it{Y}, \quad Var(\it{X}+\it{Y}) = Var(\it{X}) + \ Var(\it{Y}) + \ 2 \ Cov(\it{X},\it{Y})$

If
$$X$$
, Y are independent, then $Var(X+Y) = Var(X) + Var(Y)$

Expected value of a function of a random variable

$$E\left[h(X)\right] = \sum_{x} h(x) \Pr[X = x]$$
 if X is dicrete and $E\left[h(X)\right] = \int_{-\infty}^{\infty} h(x) f(x) dx$ if X is continuous.

Moment generating function

The moment generating function of a discrete random variable written $M_{_{\! X}}\!(t)$ is: $M_{_{\! X}}\!(t)=E(e^{tx})$

 \bullet Expectation, variance, and moments via mgf's: $M_{\!X}\!(0)=1,$

$$M_{\!X}'(0) = \mathcal{E}(X), \quad M_{\!X}''(0) = \mathcal{E}(X^2), \quad M_{\!X}'''(0) = \mathcal{E}(X^3), \text{ etc.}$$
 $\operatorname{Var}(X) = M_{\!X}''(0) - M_{\!X}'(0)^2.$

• Mgf of a multiple of a r.v.: If X has mgf $M_X(t)$, and Y = cX with c a constant, then the mgf of Y is

$$M_Y(t) = E(e^{tY}) = E(e^{tcX}) = M_X(tc).$$

• Mgf of a sum of independent r.v.'s X and Y: If X and Y are independent, then X + Y has mgf

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

(An analogous formula holds for sums of more than two independent r.v.'s.)

Other parameters of the distribution

• For $0 \leq p \leq 1$, the $(100p)^{th}$ percentile of a continuous random variable written $\eta(p)$ is:

$$p=F[\eta(p)]=\int_{-\infty}^{\eta(p)}f(y) \,\,\, y$$

- The median of a continuous distribution written $ilde{\mu}$ satisfies $0.5=F(ilde{\mu})=\ the\ 50^{th}$ percentile of the distribution.
- The mode of a distribution is any point ${\sf m}$ at which the probability mass function p(x) or the density function f(x) is maximized.
- The skewness of a distribution is: $\frac{E[(X-\mu)^3]}{\sigma^3}$

Discrete Distributions

1. **Uniform** A distribution of N points, 1, 2..., N, where N is an integer.

$$p(x) = rac{1}{N} \hspace{1cm} E(X) = rac{N+1}{2} \hspace{1cm} Var(X) = rac{N^2-1}{12} \hspace{1cm} M_{\!_{\scriptstyle X}}(t) = rac{e^t(e^{Nt}-1)}{N\;(e^t-1)}$$

2. **Binomial** An experiment consisting of a fixed number of n trials. Each trial is identical and results in one of two possible outcomes, denoted success (S) or failure (F) The trials are independent and the probability of a success is denoted p. The binomial random variable X is equal to the number of successes in p trials.

$$p(x) = inom{n}{x} p^x (1-p)^{n-x}, \; \; x = 0, 1, 2,, n, \quad E(X) = np \qquad Var(X) = np(1-p) \qquad \quad M_{X}^{}(t) = (1-p+p \, e^t \,)^n$$

3. *Hypergeometric* Closely related to binomial, but it is known that the population (N) contains M successes. X is the number of successes in a random sample of size n drawn from a population of M successes.

$$p(x) = egin{array}{c} {M \choose x} {N-M \choose n-x} \ {N \choose M} \end{array} \qquad E(X) = n \, rac{M}{N} \qquad Var(X) = \, n \, rac{M}{N} \, \left(1 - rac{M}{N}
ight) \, rac{N-n}{N-1} \ \end{array}$$

4. **Pascal** Related to binomial. An experiment continues until a total of r successes have been observed (r is a positive integer). X is equal to the number of trials until the r^{th} success is completed.

$$p(x) = \left(egin{array}{ccc} x-1 \ r-1 \end{array}
ight) p^r (1-p)^{x-r}, \ x = r \ , \ r+1, r+2, & E(X) = rac{r}{p} & Var(X) = rac{r(1-p)}{p^2} & M_X(t) = \left[rac{p \ e^t}{1-(1-p) \ e^t}
ight]^r$$

5. **Geometric** Special case of negative binomial when r = 1. So, want to perform the experiment until a success occurs. \dot{X} is equal to the number of trials until the first success is completed.

$$p(x) = p(1-p)^{x-1}, \ x = 1, 2, \hspace{0.5cm} E(X) = rac{1}{p} \hspace{0.5cm} Var(X) = rac{1-p}{p^2} \hspace{0.5cm} M_X(t) = rac{p \ e^t}{1-(1-p)e^t}$$

6. **Poisson** Not based on any simple experiment. Most often used to count the number of a certain type of event that occurs in a period of time.

$$p(x) = rac{e^{-\lambda}\lambda^x}{x!}, \; x = 0, 1, 2, \ldots \qquad \qquad E(X) = \lambda \qquad \qquad Var(X) = \lambda \qquad \qquad M_{_{\! X}}\!(t) = \; e^{\lambda\,(e^{\,t}-1)}$$

for some $\lambda > 0$ where λ is frequently some rate per unit of time.

Continuous Distributions

1. **Uniform** X is distributed uniformly over (a,b).

$$f(x) = rac{1}{b-a}$$
 , $a < x < b$ $E(X) = rac{b-a}{2}$ $Var(X) = rac{(b-a)^2}{12}$ $M_{\!X}(t) = rac{e^{bt} - e^{at}}{(b-a)\,t}$

2. **Normal** Distribution given that is the mean and is the variance of the distribution.

$$f(x)=rac{1}{\sqrt{2\pi\sigma}}\,\,\,e^{-rac{(x-\mu)^2}{2\,\sigma^2}} \hspace{0.5cm} E\left(X
ight)=\mu \hspace{1.5cm} Var(X)=\sigma^2 \hspace{0.5cm} M_{\!X}(t)=exp\left[\mu t+rac{\sigma^2t^2}{2}
ight]$$

When μ = 0 and σ = 1, the normal distribution is called a standard normal distribution and the standard normal random variable is denoted Z.

$$f_{\!\scriptscriptstyle Z}(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$

If X has a normal distribution, it can be standardized by $Z = \frac{X - \mu}{\sigma}$

3 *Gamma* For $\alpha>0$, the gamma function $\Gamma(\alpha)$ is defined by: $\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}\,e^{-x}\,dx$.

$$\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$$
 and $\Gamma(n) = (n-1)!$ for n positive integer.

A continuous random variable X is said to have a gamma distribution with parameters α , $\beta>0$ if:

$$f(x)=rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta rac{x}{eta}}, \; x>0 \qquad E\left(X
ight)=rac{lpha}{eta} \quad Var(X)=rac{lpha}{eta^2} \qquad M_X^{}(t)=(rac{eta}{eta-t})^{lpha} \; \; for \; \; t$$

4. **Exponential** The exponential distribution is a special case of the gamma distribution with $\alpha=1$ and $\beta=\lambda$

$$f(x)=\lambda e^{-\lambda x}\,,\,\,x>0 \qquad E(X)=rac{1}{\lambda} \qquad Var(X)=rac{1}{\lambda^2} \qquad M_{_{\! X}}\!(t)\!=rac{\lambda}{\lambda-t} \;\;for\;\;t<\lambda$$

Joint, Marginal and Conditional Distributions

• Let X and Y be two discrete random variables defined on the sample space S of an experiment. The joint probability mass function $p_{_{X|_{Y}}}(x,y)$, is defined for each (x,y) pair by:

$$p_{_{X|Y}}(x,y) \, \equiv \, p \, (x,y) = \Pr[X=x \, , \, Y=y \,]$$

and p(x, y) must satisfy:

$$0 \leq p\left(x,y
ight) \leq 1 ext{ and } \sum_{x} \sum_{y} p(x,y) = 1.$$

• Let X and Y be two continuous random variables. Then, the joint probability density function $f_{X,Y}(x,y)=f(x,y)$ must satisfy:

$$f(x,y) \geq 0$$
 and $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$.

Marginal Distribution

• The marginal proability mass function for the discrete random variables X and Y, denoted $p_{_{\! X}}(x)$ and $p_{_{\! Y}}(y)$ are given by:

• In the continuous case, they are given by:

Expected Value

Let X and Y be two jointly distributed random variables. The expected value of a function h of (X,Y) denoted E[h(X,Y)] is:

$$E[h(X,Y)]=\sum_x\sum_y h(x,y) \ \ p(x,y)$$
 If X and Y are discrete $E[h(X,Y)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}h(x,y)\ f(x,y)\ dx\ dy$ If X and Y are continuous

Moment Generating Function

The moment generating function for two jointly distributed random variables X and Y, denoted $M_{X,Y}(t_1,t_2)$ is:

$$M_{X,Y}(t_1,t_2) = E[e^{t_1X+\,t_2Y}]$$

Variance, Covariance, Correlation

• The covariance between two random variables X and Y is :

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)$$

$$Cov(X,Y) = \sum_{x} \sum_{y} x \ y \ p(x,y) - \mu_{_X} \mu_{_Y}$$
 in the discrete case
$$Cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \ y \ f(x,y) \ dx \ dy - \mu_{_X} \mu_{_Y}$$
 in the continuous case

- If X and Y are independent, then $E[X\cdot Y]=E[X]E[Y]$ Cov(X,Y)=0
- Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y]
- The correlation coefficient of X and Y, denoted by corr(X,Y) or ρ_{XY} is defined by:

$$ho_{\scriptscriptstyle X,Y} = rac{Cov(X,Y)}{\sigma_{\scriptscriptstyle X}\sigma_{\scriptscriptstyle Y}}$$

If a and c are either both positive or both negative, Corr(aX+b,cY+d)=Corr(X,Y)For any two random variables X and $Y,-1 \leq Corr(X,Y) \leq 1$.

Independence

Two random variables X and Y are said to be independent if and only if one of the following holds:

(i) for every pair of x and y values:

(ii) for every pair of functions g and h

$$E[g(X) h(Y)] = E[g(X)] E[h(Y)]$$

(iii) for every pair of t_1 and t_2 values:

$$M_{X,Y}(t_1,t_2) = M_X(t_1) M_Y(t_2)$$

Conditional Distributions in the continuous case

Let X and Y be two random variables with joint pdf f(x,y) and marginal X pdf $f_X(x)$. For any x - value for which $f_X(x)>0$, the conditional probability density function of Y given that X=x is:

$$f_{Y|X=\;x} = rac{f(x,y)}{f_X(x)}$$

Conditional expectation and variance

For two jointly distributed random variables X and Y:

$$egin{aligned} E[X \mid Y = oldsymbol{y}] &= \int_{-\infty}^{\infty} x \, f_{X \mid Y = y}^{} \, dx = oldsymbol{g}(oldsymbol{y}) \ & & Var[X \mid Y] = E[X^2 \mid Y] - E[X \mid Y]^2 \ & E[X \mid Y \mid E[X \mid Y \mid Y]] & Var[X] = Eig[Var[X \mid Y]] + Varig[E[X \mid Y]ig] \end{aligned}$$