King Saud University:
 Second Semester
 Maximum Marks $=\mathbf{2 5}$
 Mathematics Department
 Math-254
 1445 H
 Second Midterm Exam. Solution
 Time: 90 mins.

Question 1:

Use Gaussian elimination with partial pivoting to show that the following system is nonsingular and then compute the unique solution of the system using backward substitution.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0.5 \\
2 x_{1}-3 x_{2}+x_{3} & =-1 \\
-x_{1}-1.5 x_{2}+2.5 x_{3} & =-1
\end{aligned}
$$

Solution. For the first elimination step, since 2 is the largest absolute coefficient of variable x_{1} in the given system, therefore, the first row and the second row are interchange, we get

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3} & =-1 \\
x_{1}+x_{2}+x_{3} & =0.5 \\
-x_{1}-1.5 x_{2}+2.5 x_{3} & =-1
\end{aligned}
$$

Then eliminate first variable x_{1} from the second and the third rows by subtracting the multiples $m_{21}=0.5$ and $m_{31}=-0.5$ of row 1 from rows 2 and 3 respectively, gives

$$
\begin{aligned}
2 x_{1}-3 x_{2}+x_{3} & =-1 \\
+2.5 x_{2}+0.5 x_{3} & =1 \\
& -3 x_{2}+3 x_{3}
\end{aligned}=-1.5
$$

For the second elimination step, -3 is the largest absolute coefficient of second variable x_{2} in the third row, so the second and third rows are interchange, giving us

$$
\begin{array}{rlrl}
2 x_{1}-3 x_{2}+x_{3} & =-1 \\
& -3 x_{2}+3 x_{3} & = & -1.5 \\
& +2.5 x_{2}+0.5 x_{3} & =1
\end{array}
$$

Eliminate first variable x_{2} from the third row by subtracting the multiple $m_{32}=-0.8333$ of row 2 from row 3 , gives

$$
\begin{array}{rlr}
2 x_{1}-3 x_{2} & +x_{3} & =-1 \\
& -3 x_{2}+3 x_{3} & =-1.5 \\
& +3 x_{3} & =-0.25
\end{array}
$$

The original set of equations has been transformed to an equivalent upper-triangular form. Since we changed rows two times, so

$$
\operatorname{det}(A)=(-1)^{2}[(2)(-3)(3)]=-18 \neq 0,
$$

so the system is nonsingular.

Now use the transformed equivalent upper-triangular linear system form and using backward substitution, we get

$$
x_{1}=0.1667=1 / 6, \quad x_{2}=0.4167=5 / 12, \quad x_{3}=-0.0833=-1 / 12,
$$

the required unique solution of the given linear system.

Consider the following linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right) .
$$

Use LU decomposition by Dollittle's method to find the determinant of the matrix A and the unique solution of the linear system.

Solution. Since we know that

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right)\left(\begin{array}{rrr}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=L U .
$$

Using $m_{21}=\frac{2 \alpha}{\alpha}=2=l_{21}, m_{31}=\frac{1}{\alpha}=l_{31}$, and $m_{32}=\frac{(3 \alpha-4)}{(-9 \alpha)}=l_{32}(\alpha \neq 0)$, gives

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & \frac{(3 \alpha-4)}{\alpha} & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right) \equiv\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right) .
$$

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{\alpha} & \frac{(3 \alpha-4)}{(-9 \alpha)} & 1
\end{array}\right)\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right),
$$

which is the required LU decomposition of A by Dollittle's method.
The determinant of the matrix A can be obtained as

$$
\operatorname{det}(A)=\operatorname{det}(U)=\frac{-9 \alpha\left(\alpha^{2}-1\right)}{\alpha}=-9\left(\alpha^{2}-1\right) .
$$

Now to find the unique solution for system for nonzero $\alpha(\neq \pm 1)$ we do as follows:

$$
L \mathbf{y}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{\alpha} & \frac{(3 \alpha-4)}{(-9 \alpha)} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
3 \\
5
\end{array}\right)=\mathbf{b} .
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=\left[6,-9, \frac{2 \alpha-2}{\alpha}\right]^{T}=\left[6,-9, \frac{2(\alpha-1)}{\alpha}\right]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
\frac{2 \alpha-2}{\alpha}
\end{array}\right),
$$

and performing backward substitution yields, $\left[x_{1}, x_{2}, x_{3}\right]^{T}=\left[\frac{2 \alpha-2}{\alpha^{2}-1}, 1, \frac{2 \alpha-2}{\alpha^{2}-1}\right]^{T}=\left[\frac{2}{\alpha+1}, 1, \frac{2}{\alpha+1}\right]^{T}$.

Consider the following linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
5 & 0 & -1 \\
-1 & 3 & 0 \\
0 & -1 & 4
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) .
$$

Find the matrix form of the Gauss-Seidel iterative method and then compute the number of iterations needed to get an accuracy within 10^{-4}, using Gauss-Seidel iterative method and $\mathbf{x}^{(0)}=[0.5,0.5,0.5]^{T}$.

Solution. Let convert

$$
A=L+U+D=\left(\begin{array}{rrr}
0 & 0 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)+\left(\begin{array}{rrr}
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right) .
$$

The Gauss-Seidel iteration matrix T_{G} is defined as

$$
T_{G}=-(D+L)^{-1} U==\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
0 & 0 & 1 / 15 \\
0 & 0 & 1 / 60
\end{array}\right),
$$

and the constant term

$$
C_{G}=\left(\begin{array}{r}
1 / 5 \\
11 / 15 \\
71 / 60
\end{array}\right) .
$$

So the matrix form of Gauss-Seidel iterative method is

$$
\mathbf{x}^{(k+1)}=\left(\begin{array}{rrr}
0 & 0 & 1 / 5 \\
0 & 0 & 1 / 15 \\
0 & 0 & 1 / 60
\end{array}\right) \mathbf{x}^{(k)}+\left(\begin{array}{r}
1 / 5 \\
11 / 15 \\
71 / 60
\end{array}\right), \quad k \geq 0
$$

Using the matrix form of Gauss-Seidel iterative method for $k=0$ and initial approximation, we get

$$
\mathbf{x}^{(1)}=\left(\begin{array}{lll}
0 & 0 & 1 / 5 \\
0 & 0 & 1 / 15 \\
0 & 0 & 1 / 60
\end{array}\right)\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5
\end{array}\right)+\left(\begin{array}{l}
1 / 5 \\
11 / 15 \\
71 / 60
\end{array}\right)=\left(\begin{array}{l}
0.3000 \\
0.7667 \\
1.1917
\end{array}\right),
$$

and the l_{∞}-norm of the matrix T_{G} is

$$
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{1}{5}, \frac{1}{15}, \frac{1}{60}\right\}=\frac{1}{5}=0.2000
$$

we obtain

$$
M=\frac{\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(0)}\right\|}{1-\left\|T_{G}\right\|}=\frac{0.6917}{(1-0.2000)}=0.8646
$$

and

$$
k \geq \frac{\ln \left(10^{-4} /(0.8646)\right)}{\ln (0.2000)}=5.6323, \quad \text { gives } \quad k=6 .
$$

Consider the following linear system:

$$
\begin{array}{rr}
x_{1}-x_{2}+x_{3}= & -2 \\
2 x_{1}+x_{2}-2 x_{3}= & 6 \\
2 x_{1}-x_{2}-x_{3}=1
\end{array}
$$

If $\mathbf{x}^{*}=[1.01,2.01,-0.98]^{T}$ is an approximate solution of the given linear system, then find the corresponding residual vector \mathbf{r} and estimate the relative error $\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|}$.

Solution. The given system coefficients matrix is:

$$
A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -2 \\
2 & -1 & -1
\end{array}\right)
$$

and its inverse is given by:

$$
A^{-1}=\left(\begin{array}{ccc}
0.6 & 0.4 & -0.2 \\
0.4 & 0.6 & -0.8 \\
0.8 & 0.2 & -0.6
\end{array}\right) .
$$

Thus, the l_{∞}-norms of these matrices are $\|A\|_{\infty}=5$ and $\left\|A^{-1}\right\|_{\infty}=1.8$, respectively.
Hence, the condition number of A is:

$$
K(A)=\|A\|_{\infty}\left\|\mid A^{-1}\right\|_{\infty}=(5)(1.8)=9 .
$$

The residual vector corresponding to $\mathbf{x}^{*}=[1.01,2.01,-0.98]^{T}$ is given as:

$$
\mathbf{r}=\mathbf{b}-A \mathbf{x}^{*}=\left(\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right)-\left(\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -2 \\
2 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
1.01 \\
2.01 \\
-0.98
\end{array}\right)=\left(\begin{array}{r}
-0.02 \\
0.01 \\
0.01
\end{array}\right) .
$$

Therefore,

$$
\|\mathbf{r}\|_{\infty}=0.02 .
$$

From relative error formula, we have:

$$
\frac{\left\|\mathbf{x}-\mathbf{x}^{*}\right\|}{\|\mathbf{x}\|} \leq K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|} .
$$

Then, using the results in parts (a) and (b) and $\|\mathbf{b}\|_{\infty}=6$, implies:

$$
\frac{\|\mathbf{x}-\hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \leq(9) \frac{(0.02)}{6}=0.03 .
$$

