Question 1:

[6 Marks]

•

Use Gaussian elimination with partial pivoting to show that the following system is nonsingular and then compute the unique solution of the system using backward substitution.

Solution. For the first elimination step, since 2 is the largest absolute coefficient of variable x_1 in the given system, therefore, the first row and the second row are interchange, we get

Then eliminate first variable x_1 from the second and the third rows by subtracting the multiples $m_{21} = 0.5$ and $m_{31} = -0.5$ of row 1 from rows 2 and 3 respectively, gives

For the second elimination step, -3 is the largest absolute coefficient of second variable x_2 in the third row, so the second and third rows are interchange, giving us

Eliminate first variable x_2 from the third row by subtracting the multiple $m_{32} = -0.8333$ of row 2 from row 3, gives

The original set of equations has been transformed to an equivalent upper-triangular form. Since we changed rows two times, so

$$\det(A) = (-1)^2[(2)(-3)(3)] = -18 \neq 0,$$

so the system is nonsingular.

Now use the transformed equivalent upper-triangular linear system form and using backward substitution, we get

 $x_1 = 0.1667 = 1/6,$ $x_2 = 0.4167 = 5/12,$ $x_3 = -0.0833 = -1/12,$

the required unique solution of the given linear system.

Consider the following linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} \alpha & 4 & 1 \\ 2\alpha & -1 & 2 \\ 1 & 3 & \alpha \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 6 \\ 3 \\ 5 \end{pmatrix}.$$

Use LU decomposition by Dollittle's method to find the determinant of the matrix A and the unique solution of the linear system.

Solution. Since we know that

$$A = \begin{pmatrix} \alpha & 4 & 1 \\ 2\alpha & -1 & 2 \\ 1 & 3 & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = LU.$$

Using $m_{21} = \frac{2\alpha}{\alpha} = 2 = l_{21}, m_{31} = \frac{1}{\alpha} = l_{31}$, and $m_{32} = \frac{(3\alpha - 4)}{(-9\alpha)} = l_{32} (\alpha \neq 0)$, gives

$$\begin{pmatrix} \alpha & 4 & 1\\ 0 & -9 & 0\\ 0 & \frac{(3\alpha-4)}{\alpha} & \frac{(\alpha^2-1)}{\alpha} \end{pmatrix} \equiv \begin{pmatrix} \alpha & 4 & 1\\ 0 & -9 & 0\\ 0 & 0 & \frac{(\alpha^2-1)}{\alpha} \end{pmatrix}.$$

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus

$$A = \begin{pmatrix} \alpha & 4 & 1\\ 2\alpha & -1 & 2\\ 1 & 3 & \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ \frac{1}{\alpha} & \frac{(3\alpha - 4)}{(-9\alpha)} & 1 \end{pmatrix} \begin{pmatrix} \alpha & 4 & 1\\ 0 & -9 & 0\\ 0 & 0 & \frac{(\alpha^2 - 1)}{\alpha} \end{pmatrix},$$

which is the required LU decomposition of A by Dollittle's method. The determinant of the matrix A can be obtained as

$$det(A) = det(U) = \frac{-9\alpha(\alpha^2 - 1)}{\alpha} = -9(\alpha^2 - 1).$$

Now to find the unique solution for system for nonzero $\alpha \ (\neq \pm 1)$ we do as follows:

$$L\mathbf{y} = \begin{pmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ \frac{1}{\alpha} & \frac{(3\alpha - 4)}{(-9\alpha)} & 1 \end{pmatrix} \begin{pmatrix} y_1\\ y_2\\ y_3 \end{pmatrix} = \begin{pmatrix} 6\\ 3\\ 5 \end{pmatrix} = \mathbf{b}.$$

Performing forward substitution yields, $[y_1, y_2, y_3]^T = [6, -9, \frac{2\alpha-2}{\alpha}]^T = [6, -9, \frac{2(\alpha-1)}{\alpha}]^T$. Then solving the upper-triangular system $U\mathbf{x} = \mathbf{y}$ for unknown vector \mathbf{x} , that is

$$\begin{pmatrix} \alpha & 4 & 1\\ 0 & -9 & 0\\ 0 & 0 & \frac{(\alpha^2 - 1)}{\alpha} \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} 6\\ -9\\ \frac{2\alpha - 2}{\alpha} \end{pmatrix},$$

and performing backward substitution yields, $[x_1, x_2, x_3]^T = \begin{bmatrix} \frac{2\alpha-2}{\alpha^2-1}, 1, \frac{2\alpha-2}{\alpha^2-1} \end{bmatrix}^T = \begin{bmatrix} \frac{2}{\alpha+1}, 1, \frac{2}{\alpha+1} \end{bmatrix}^T \cdot \bullet$

Question 2:

Consider the following linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 5 & 0 & -1 \\ -1 & 3 & 0 \\ 0 & -1 & 4 \end{pmatrix} \quad \text{and} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$$

Find the matrix form of the Gauss-Seidel iterative method and then compute the number of iterations needed to get an accuracy within 10^{-4} , using Gauss-Seidel iterative method and $\mathbf{x}^{(0)} = [0.5, 0.5, 0.5]^T$.

Solution. Let convert

$$A = L + U + D = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

The Gauss-Seidel iteration matrix T_G is defined as

$$T_G = -(D+L)^{-1}U = = \begin{pmatrix} 0 & 0 & 1/5 \\ 0 & 0 & 1/15 \\ 0 & 0 & 1/60 \end{pmatrix},$$

and the constant term

$$C_G = \left(\begin{array}{c} 1/5\\11/15\\71/60\end{array}\right).$$

So the matrix form of Gauss-Seidel iterative method is

$$\mathbf{x}^{(k+1)} = \begin{pmatrix} 0 & 0 & 1/5 \\ 0 & 0 & 1/15 \\ 0 & 0 & 1/60 \end{pmatrix} \mathbf{x}^{(k)} + \begin{pmatrix} 1/5 \\ 11/15 \\ 71/60 \end{pmatrix}, \quad k \ge 0.$$

Using the matrix form of Gauss-Seidel iterative method for k = 0 and initial approximation, we get

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0 & 0 & 1/5 \\ 0 & 0 & 1/15 \\ 0 & 0 & 1/60 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \end{pmatrix} + \begin{pmatrix} 1/5 \\ 11/15 \\ 71/60 \end{pmatrix} = \begin{pmatrix} 0.3000 \\ 0.7667 \\ 1.1917 \end{pmatrix},$$

and the l_{∞} -norm of the matrix T_G is

$$||T_G||_{\infty} = \max\left\{\frac{1}{5}, \frac{1}{15}, \frac{1}{60}\right\} = \frac{1}{5} = 0.2000,$$

we obtain

$$M = \frac{\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|}{1 - \|T_G\|} = \frac{0.6917}{(1 - 0.2000)} = 0.8646,$$

and

$$k \ge \frac{\ln(10^{-4}/(0.8646))}{\ln(0.2000)} = 5.6323, \text{ gives } k = 6.$$

•

Question 4:

Consider the following linear system:

If $\mathbf{x}^* = [1.01, 2.01, -0.98]^T$ is an approximate solution of the given linear system, then find the corresponding residual vector \mathbf{r} and estimate the relative error $\frac{\|\mathbf{x} - \mathbf{x}^*\|}{\|\mathbf{x}\|}$.

Solution. The given system coefficients matrix is:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -2 \\ 2 & -1 & -1 \end{pmatrix},$$

and its inverse is given by:

$$A^{-1} = \left(\begin{array}{rrr} 0.6 & 0.4 & -0.2 \\ 0.4 & 0.6 & -0.8 \\ 0.8 & 0.2 & -0.6 \end{array}\right).$$

Thus, the l_{∞} -norms of these matrices are $||A||_{\infty} = 5$ and $||A^{-1}||_{\infty} = 1.8$, respectively. Hence, the condition number of A is:

$$K(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = (5)(1.8) = 9.$$

The residual vector corresponding to $\mathbf{x}^* = [1.01, 2.01, -0.98]^T$ is given as:

$$\mathbf{r} = \mathbf{b} - A \mathbf{x}^* = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} - \begin{pmatrix} 1 & -1 & 1\\2 & 1 & -2\\2 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1.01\\2.01\\-0.98 \end{pmatrix} = \begin{pmatrix} -0.02\\0.01\\0.01 \end{pmatrix}.$$

Therefore,

$$\|\mathbf{r}\|_{\infty} = 0.02.$$

From relative error formula, we have:

$$\frac{\|\mathbf{x} - \mathbf{x}^*\|}{\|\mathbf{x}\|} \le K(A) \frac{\|\mathbf{r}\|}{\|\mathbf{b}\|}.$$

Then, using the results in parts (a) and (b) and $\|\mathbf{b}\|_{\infty} = 6$, implies:

$$\frac{\|\mathbf{x} - \hat{\mathbf{x}}\|}{\|\mathbf{x}\|} \le (9)\frac{(0.02)}{6} = 0.03.$$