King Saud University,	Mid-Term Exam $2 (M425)/S1/2024$
College of Sciences	Full Mark:25. Time 1H30m
Mathematical Department.	28/11/2024

Question 1. [5,4] a) Solve the Cauchy problem

$$xu_{xx} + 2x^2u_{xy} - u_x = 1, \ 1 < x < 0, \ y > 0.$$
$$u_x(1, y) = 0, \ u(1, y) = 1, \ y > 0.$$

b) What are the conditions on the constants a, b, c, d, e for which the function u is harmonic

i)
$$u(x, y) = e^{ax} \cos(by) + e^{cx} \sin(dy)$$

ii) $u(x, y, z) = x^2 + ay^2 + bz^2 + cxy + dxz + eyz$

Question 2. [4,4] a) Assume that the function ψ is harmonic and non constant on \mathbb{R}^2 . When the function $F \circ \psi$ can be harmonic?

b) Find the solution of the Dirichlet problem

$$\begin{cases} u_{xx} + u_{yy} = 0, \ 0 < x < \pi, \ 0 < y < 2\pi \\ u(0, y) = u(\pi, y) = 0, \ 0 < y < 2\pi \\ u(x, 0) = 0, \ u(x, 2\pi) = 1, \ 0 < x < \pi. \end{cases}$$

Question 3. [4,4] a) By using polar coordinates $x = r \cos \theta$, $y = r \sin \theta$,

show that the differential equation

$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0,$$

can be written as $u_{rr} = 0$. Deduce the general solution of $u_{rr} = 0$, then write this solution in chartezian coordinates.

b) Find the maximum and minimum of the functions $u(x, y) = e^x \cos y$, and $v(x, y) = e^x \sin y$ on the square $[0, \pi] \times [0, \pi]$.