Mid-Term1 /S1/2018
Full Mark:25. Time 1H30mn
18/10/2018

Question 1[5]. Find and sketch the largest local region of the $x y$-plane for which the initial value problem

$$
\left\{\begin{array}{c}
\sqrt{y^{2}-4} d y-(x-y)^{2} \ln x d x=0 \\
y(2)=-3
\end{array}\right.
$$

has a unique solution.
Question $2[4+4]$. a) Solve the initial value problem

$$
\left\{\begin{array}{c}
\frac{d y}{d x}=\frac{y}{x}(\ln x-\ln y), \quad x>0, y>0 \\
y(1)=1
\end{array}\right.
$$

b) By using an appropriate substitution, solve the differential equation

$$
2 x e^{2 y} \frac{d y}{d x}=3 x^{4}+e^{2 y}, \quad x>0
$$

Question $3[4+4]$. a) Solve the differential equation

$$
2 y+2 x^{2} y^{2}+\left(x+x^{3} y\right) \frac{d y}{d x}=0, \quad x+x^{3} y \neq 0
$$

b) Find the general solution of the differential equation

$$
\left(2 x^{-1} y^{3 l 2}-x^{-2} e^{x}\right) d x+\sqrt{y} d y=0, \quad x>0, \quad y>0
$$

Question 4[4]. The population of a town is doubled in 5 years and became 20000 in 10 years. What is the initial population if the rate of growth of population is proportional to the population at that instant.

