> Midterm Exam
> Math 280
> $3^{r d}$ semester 1444

The first question. [3+3]

1. Let A be a nonempty subset of \mathbb{R}. If A is bounded below, show that $-A$ is bounded above and $\inf A=-(\sup -A)$.
2. If x and y are two real numbers and $x<y$, prove that there exists a rational number r such that

$$
x<r<y .
$$

The second question $[3+3]$

1. Prove using the definition that $\lim _{n \rightarrow \infty} \frac{2 n+3}{5 n+1}=\frac{2}{5}$.
2. Prove that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $x_{n}+y_{n} \rightarrow x+y$.
3. If $\lim _{n \rightarrow \infty} \frac{x_{n}-1}{x_{n}+1}=0$, prove that $\lim _{n \rightarrow \infty} x_{n}=1$.

The third question $[3+3]$

1) Let $f:(-1,1) \rightarrow \mathbb{R}$ satisfying

$$
|f(x)-2| \leq 2|x-1| \quad \text { for all } \quad x \in \mathbb{R} .
$$

Prove that f is continuous at $x=1$.
2) Show that: $f(x)=(1+x)^{2}$ is not uniformly continuous on \mathbb{R}.

The forth question. $[2+2+2]$
Test the following series for convergence:

1. $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}$,
2. $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$,
3. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$.
