$\begin{array}{c} \text{Midterm Exam} \\ \text{Math 280} \\ 3^{rd} \text{ semester 1444} \end{array}$

The first question.[3+3]

- 1. Let A be a nonempty subset of \mathbb{R} . If A is bounded below, show that -A is bounded above and $\inf A = -(\sup -A)$.
- 2. If x and y are two real numbers and x < y, prove that there exists a rational number r such that

$$x < r < y.$$

The second question [3+3]

- 1. Prove using the definition that $\lim_{n\to\infty} \frac{2n+3}{5n+1} = \frac{2}{5}$.
- 2. Prove that if $x_n \to x$ and $y_n \to y$, then $x_n + y_n \to x + y$.
- 3. If $\lim_{n\to\infty} \frac{x_n-1}{x_n+1} = 0$, prove that $\lim_{n\to\infty} x_n = 1$.

The third question[3+3]

1) Let $f: (-1,1) \to \mathbb{R}$ satisfying

$$|f(x) - 2| \le 2|x - 1|$$
 for all $x \in \mathbb{R}$.

Prove that f is continuous at x = 1.

2) Show that: $f(x) = (1+x)^2$ is not uniformly continuous on \mathbb{R} .

The forth question.[2+2+2]

Test the following series for convergence:

- 1. $\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}$,
- 2. $\sum_{n=0}^{\infty} \frac{n}{2^n}$,
- 3. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.