[Solution Key]

KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

Semester 461 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Time: $1\frac{1}{2}$ hrs. Max. Marks: 25

Question 1: [Marks: 5]

Determine whether the following statements are true or false and justify your answer:

If A and B are symmetric matrices compatible for the product AB, then AB is also symmetric.

False: for example, $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 3 & 2 \end{bmatrix}$ are symmetric but $AB = \begin{bmatrix} 5 & 5 \\ -1 & 1 \end{bmatrix}$ is not symmetric.

If the matrix A^2 is invertible, then A itself is invertible.

True: A is not invertible $\Rightarrow |A| = 0 \Rightarrow |A^2| = |A|^2 = 0 \Rightarrow A^2$ is not invertible.

(iii) If the matrix $\begin{bmatrix} -4 - 3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & x \end{bmatrix}$ is its own adjoint, then x = 3.

True: $adj = \begin{bmatrix} -4 - 3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & x \end{bmatrix} = \begin{bmatrix} -4 - 3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & x \end{bmatrix} \Rightarrow x = c_{33} = (-1)^{3+3} M_{33} = \begin{vmatrix} -4 & -3 \\ 1 & 0 \end{vmatrix} = 3$.

- (iv) If square matrices A and B are compatible for the product AB, then |AB| = |BA|. **True**: |AB| = |A||B| = |B||A| = |BA|.
- (v) If $A = \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix}$, then $(-\frac{1}{11}, \frac{2}{11})$ is a solution of the equation $A^{-1} = xA + yI_2$. True: $A^{-1} = \frac{1}{|A|} adj((A) = \frac{1}{11} \begin{bmatrix} 1 & -2 \\ 5 & 1 \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} 1 & 2 \\ -5 & 1 \end{bmatrix} + \frac{2}{11} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = xA + yI_2$.

Question 2: [Marks: 4 + 3 + 3]

(a) Find the matrix A if $A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & -2 \end{bmatrix}$.

Solution: $A = (A^{-1})^{-1} = 2 \begin{bmatrix} 1 & -1 & 1 \\ -1 & 3 & 1 \\ 1 & 1 & -2 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 7 & 1 & 4 \\ 1 & 3 & 2 \\ 4 & 2 & -2 \end{bmatrix}$.

(b) Show that $\begin{vmatrix} 1 & 1 & 1 & 1 \\ b+c & c+a & a+b \\ -(b+c-a) & -(c+a-b) & -(a+b-c) \end{vmatrix} = 0$.

Solution: $\begin{vmatrix} 1 & 1 & 1 & 1 \\ b+c & c+a & a+b \\ -(b+c-a) & -(c+a-b) & -(a+b-c) \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ b+c & c+a & a+b \\ a & b & c \end{vmatrix}$ $= \begin{vmatrix} 1 & 1 & 1 & 1 \\ a+b+c & b+c+a & c+a+b \\ a & b & c \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ a & b & c \end{vmatrix}$

(c) Let A be a square matrix of size n with |A| = 3 and |adj(A)| = 27. Find n. **Solution:** $adj(A) = |A|A^{-1} \Rightarrow |adj(A)| = |A|^{n-1}$. Hence, $3^3 = 27 = 3^{n-1}$ gives n = 3 + 1 = 4.

Question 3: [Marks: 3 + 3 + 4]

- (a) Solve the matrix equation: XA = B, where $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -1 & -1 \\ -4 & 0 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 1 & 1 \\ 8 & 1 & -5 \\ 4 & 3 & -3 \end{bmatrix}$.

 Solution: Since |A| = -3, A^{-1} exists. $XA = B \Rightarrow X = BA^{-1} = \begin{bmatrix} -2 & 1 & 1 \\ 8 & 1 & -5 \\ 4 & 3 & -3 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} 3 & 6 & 3 \\ 2 & 1 & 1 \\ 4 & 8 & 5 \end{pmatrix} \end{pmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \end{bmatrix}$.
 - (b) Solve the following system of linear equations by using Cramer's Rule:

$$x + 3y + 3z = 1$$
$$x + 3y + 5z = -1$$

$$z + 2y - z = 2.$$

x + 3y + 5z = -1 x + 2y - z = 2.Solution: $|A| = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 3 & 5 \\ 1 & 2 - 1 \end{vmatrix} = 2$, $|A_x| = \begin{vmatrix} 1 & 3 & 3 \\ -1 & 3 & 5 \\ 2 & 2 - 1 \end{vmatrix} = -10$, $|A_y| = \begin{vmatrix} 1 & 1 & 3 \\ 1 & -1 & 5 \\ 1 & 2 - 1 \end{vmatrix} = 6$ and $|A_z| = \begin{vmatrix} 1 & 3 & 1 \\ 1 & 3 & -1 \\ 1 & 2 & 2 \end{vmatrix} = -2$.

Hence, $x = \frac{|A_x|}{|A|} = -\frac{10}{2} = -5$, $y = \frac{|A_y|}{|A|} = \frac{6}{2} = 3$ and $z = \frac{|A_z|}{|A|} = -\frac{2}{2} = -1$.

(c) Find the value of m for which the following system of linear equations admits a unique solution and then find this uniquely existing solution.

$$x + y + z = 1$$

 $x + y + 2z = 0$
 $2x - y - z = -1$

$$x - 2y + z = m.$$

Solution: $[A:B] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 2 & -1 & -1 & -1 \\ 1 & -2 & 1 & m \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & m+5 \end{bmatrix}$. So, m = -5 gives a unique solution x = 0, y = 2, z = -1.

[Mark 1]

[Solution Key]

KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

Semester 461 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Time: $1\frac{1}{2}$ hrs. Max. Marks: 25

Question 1: [Marks: 5]

Determine whether the following statements are true or false:

- If A is a square matrix and $A^2 = 0$, then $(I + A)^{-1} = I A$. [True] [Mark 1]
- (ii) If A and B are row equivalent square matrices, then |A| = |B|. [False] [Mark 1]

(iii) If
$$Aadj(A) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $|A| = 9$. [False] [Mark 1]

- (iv) There is a homogeneous linear equation for which (1, 0, 2) is a solution but not (2, 0, -4). [True]
- (v) If RREF(A) has a zero row, then AX = B must have infinitely many solutions. [False] [Mark 1]

Question 2: [Marks: 4 + 3 + 3]

(a) Find inverse of the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 and find the matrix B satisfying the equation $BA = A^2 + 5A$.
Solution: $[A|I] = \begin{bmatrix} 2 & 0 & 0 & : & 1 & 0 & 0 \\ 0 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 0 & 3 & : & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & : & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & : & 0 & 1 & 0 \\ 0 & 0 & 1 & : & 0 & 0 & \frac{1}{3} \end{bmatrix}$, and so $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$. [Marks 2]
Next, $B = (BA)A^{-1} = (A^2 + 5A)A^{-1} = A + 5I = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 8 \end{bmatrix}$. [Marks 2]

- (b) Let A be an invertible matrix. Show that $(adj(A))^{-1} = adj(A^{-1})$. **Solution:** $adj(A) = |A| A^{-1} \implies (adj(A^{-1}))^{-1} = (|A|^{-1} A)^{-1} = |A| A^{-1} = adj(A) \implies (adj(A))^{-1} = adj(A^{-1})$.
- (c) Show that the matrix $\begin{bmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{bmatrix}$ is invertible for all $x \in \mathbb{R}$, where \mathbb{R} denotes the set of real numbers. Solution: Since $\begin{vmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{vmatrix} = 1 + x(x+1) \neq 0$ for all $x \in \mathbb{R}$, $\begin{bmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{bmatrix}$ is invertible for all $x \in \mathbb{R}$.

Solution: Since
$$\begin{vmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{vmatrix} = \mathbf{1} + x(x+1) \neq \mathbf{0}$$
 for all $x \in \mathbb{R}$, $\begin{bmatrix} 1 & 0 & 1+x \\ 1 & 1 & 0 \\ -x & 0 & 1 \end{bmatrix}$ is invertible for all $x \in \mathbb{R}$

Question 3: [Marks: 2 + 4 + 4]

- (a) If E is an elementary matrix, then show that the linear system EX = O has only the trivial solution. **Solution:** Since E being an elementary matrix is invertible, $X = E^{-1}(EX) = E^{-1}0 = 0$; only trivial solution.
 - (b) Solve the following system of linear equations:

$$x + y = 1$$

$$x + 2y + z = -1$$

$$x + 3y - z = 2.$$
Solution: Observe that $|A| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{vmatrix} = -3 \neq, |A_x| = \begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 & -1 \end{vmatrix} = -4, |A_y| = \begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = 1,$
and $|A_z| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{vmatrix} = 5$. So, by Cramer's Rule, $x = \frac{|A_x|}{|A|} = \frac{4}{3}$, $y = \frac{|A_y|}{|A|} = \frac{-1}{3}$, $z = \frac{|A_z|}{|A|} = \frac{-5}{3}$.

(c) What conditions must a, b, c, and d satisfy for the following system to be consistent?

$$x_1 + x_2 - x_4 = a$$

$$x_2 - x_3 - 2x_4 = b$$

$$2x_1 + 2x_3 + 2x_4 = c$$

$$2x_1 + x_2 + x_3 = d.$$
Solution: Since $[A|I] = \begin{bmatrix} 1 & 1 & 0 - 1 & a \\ 0 & 1 - 1 - 2 & b \\ 2 & 0 & 2 & 2 & c \\ 2 & 1 & 1 & 0 & d \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 - 1 & a \\ 0 & 1 - 1 - 2 & b \\ 0 & 0 & 0 & 0 & c - 2a + 2b \\ 0 & 0 & 0 & 0 & c - 2a + b \end{bmatrix}$, the given system would be

[Solution Key]

KING SAUD UNIVERSITY COLLEGE OF SCIENCES

DEPARTMENT OF MATHEMATICS

Semester 452 / MATH-244 (Linear Algebra) / Mid-term Exam 1

Max. Time: $1\frac{1}{2}$ hr Max. Marks: 25

Question 1: [Marks: 3 + 4 + 3]

1: [Marks:
$$3+4+3$$
]

(a). Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$. Compute A^2 and then use A^2 to find A^{-1} .

Solution:
$$A^2 = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = 9\mathbf{I}$$
 and so $A^{-1} = \frac{1}{9}A = \frac{1}{9}\begin{bmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{bmatrix}$. (Marks $1+2$)

(b). Let
$$A = \begin{bmatrix} 1 & 1 - 1 & -2 \\ 1 & 1 & 0 & -2 \\ -1 & 0 & 1 & 1 \end{bmatrix}$$
. Find A^{-1} and then use A^{-1} to find $adj(A)$.

(b). Let
$$A = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 1 & 1 & 0 & -2 \\ -1 & 0 & 1 & 1 \\ -2 & 0 & 0 & 1 \end{bmatrix}$$
. Find A^{-1} and then use A^{-1} to find $adj(A)$.

Solution: $[A|I] = \begin{bmatrix} 1 & 1 & -1 & -2 \\ 1 & 1 & 0 & -2 \\ -1 & 0 & 1 & 1 \\ 1 & 1 & 0 & -2 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ -2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 0 & 3 & -2 & 3 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & -2 & 2 & -1 \end{bmatrix}$ and so $A^{-1} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 3 & -2 & 3 & -1 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & 2 & -1 \end{bmatrix}$. (Marks 1 + 1.5)

Next,
$$det(A) = 1$$
. Hence, $adj(A) = det(A)A^{-1} = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 3 & -2 & 3 & -1 \\ -1 & 1 & 0 & 0 \\ 2 & -2 & 2 & -1 \end{bmatrix}$. (Marks $1 + 1.5$)

(c). Let A be a 3×3 matrix with det(A) = 2. Evaluate det(adj(A)).

Solution: $det(adj(A)) = det(det(A)A^{-1}) = (det(A))^{3}(det(A))^{-1} = 4.$ (Marks 1 + 1.5 + 0.5)

Question 2: [Marks: 4 + 4]

(a). Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$
. Find all matrices $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ such that

(a). Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}$$
. Find all matrices $M = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ such that

Solution: $AM = MA$ implies $\begin{cases} y - z = 0 \\ x - 3z - t = 0 \end{cases}$ This system of linear equations has solution set $\begin{cases} (3z + t, z, z, t) | t, z \in \mathbb{R} \}$. Hence, $M = \begin{bmatrix} 3z + t & z \\ z & t \end{bmatrix}$ for all $t, z \in \mathbb{R}$. (Marks $2 + 0.5$)

$$\{(3z+t,z,z,t)|\ t,z\in\mathbb{R}\}.\ \text{Hence,}\ M=\begin{bmatrix}3z+t&z\\z&t\end{bmatrix} \text{ for all } t,z\in\mathbb{R}.$$
 (Marks $2+0.5$)

(b). Find the values of a, b and c so that (1,-2,3) is the solution of following system of linear equations:

$$ax + 2by + cz = 6$$

 $ax + 6by + cz = -2$
 $3ax + 4by + cz = -8$.

Solution: Since (1,-2,3) is the solution of the above given system, we get the following system of linear equations:

$$a - 4b + 3c = 6$$

 $a - 12b + 3c = -2$
 $3a - 8b + 3c = -8$.

(Marks 2) (Marks 2)

Which has the unique solution a = -5, b = 1 and c = 5.

Question 3: [Marks: 3 + 4]

(a). Use the Gauss-Jordan elimination method to solve the linear system AX = B,

$$A = \begin{bmatrix} 2 & -1 & -4 & 3 \\ 3 & -2 & -5 & 4 \\ 3 & -3 & -2 & 0 \end{bmatrix}, \ X = \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

Solution:
$$[A|I] = \begin{bmatrix} 2 & -1 & -4 & 3 \\ 3 & -2 & -5 & 4 \\ 3 & -3 & -2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \sim ... \sim \begin{bmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}$$
 (RREF). (Marks 1.5)

Hence, solution set of the given linear system is $\{(4+7t, 3+5t, 1+3t, t) \mid t \in \mathbb{R}\}$.

(Marks 1.5)

(b). Find all the non-trivial solutions of the following homogeneous system:

$$2x + 2y + 4z = 0$$

$$w - y - 3z = 0$$

$$-2w + x + 3y - 2z = 0.$$

$$\begin{bmatrix} 1 & 0 & -1 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Solution:
$$[A|I] = \begin{bmatrix} 0 & 2 & 2 & 4 & | & 0 \\ 1 & 0 & -1 & -3 & | & 0 \\ 2 & 3 & 1 & 1 & | & 0 \\ -2 & 1 & 3 & -2 & | & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & -1 & -3 & | & 0 \\ 0 & 1 & 1 & -8 & | & 0 \\ 0 & 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$
 (Marks 1.5)

Hence, the set of non-trivial solutions of the given linear system is $\{(t, -t, t, 0) \mid 0 \neq t \in \mathbb{R}.$ (Marks 2 + 0.5)

***/

Solution Key: Mid-term Exam I of MATH-244 (Linear Algebra) / Semester 451

Question 1: [Marks: 4+2+3]:

a) Find the reduced row echelon form of the matrix $A = \begin{bmatrix} -1 & 2 & -3 & -1 \\ 0 & -2 & 0 & 0 \end{bmatrix}$ and use it to find

non-trivial solutions of the linear system
$$AX = O$$
, where $O = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$.
Solution: $A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ -1 & 2 & -3 & -1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ (REF). [2 marks]

Hence, (-3t, 0, t, 0), $\forall 0 \neq t \in \mathbb{R}$, is a non-trivial solution of the system AX = 0. [2 marks]

b) Let B be a 3×3 matrix with det(B) = 2. Compute $det(B^{-1} + adj(B))$.

Solution: $det(B^{-1} + adj(B)) = det(B^{-1} + det(B) B^{-1}) = det(B^{-1} + 2B^{-1}) = det(3B^{-1}) = \frac{3^3}{det(B)} = \frac{27}{2}$. [2 marks]

c) Let $P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{bmatrix}$. Compute adj(P) and use it to find P^{-1} .

Solution:
$$adj(P) = c^{T} = \begin{bmatrix} -5 & 2 & 1 \\ 1 - 1 & -2 \\ 1 - 1 & 1 \end{bmatrix}^{T} = \begin{bmatrix} -5 & 1 & 1 \\ 2 - 1 & -1 \\ 1 & -2 & 1 \end{bmatrix}. det(P) = \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 - 1 \end{vmatrix} = -3. [1.5 + .5 marks]$$
Hence, $P^{-1} = \frac{1}{\det(P)} adj(P) = \frac{1}{-3} \begin{bmatrix} -5 & 1 & 1 \\ 2 - 1 & -1 \\ 1 - 2 & 1 \end{bmatrix}.$ [1 mark]

Question 2: [Marks: 2+3+3]:

a) Give example of an invertible matrix A with tr(A) = 0.

Solution: For any non-zero real number x, the matrix $A = \begin{bmatrix} -x & x \\ x & x \end{bmatrix}$ is invertible because [1 mark] $|A| = -2x^2 \neq 0$. However, tr(A) = 0.

b) Find the values of λ for which the matrix $C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & \lambda \\ 1 & -1 & 3 - 2 \lambda \end{bmatrix}$ is not invertible.

Solution: Since det(C) = 0 for any real value of λ , the matrix C is non-invertible for all $\lambda \in \mathbb{R}$. [1+2 marks]

c) Solve the matrix equation AZ = X + Y for Z, where A is an invertible matrix of size 3,

$$X = \begin{bmatrix} -1\\2\\3 \end{bmatrix}$$
, $Y = \begin{bmatrix} 5\\0\\-4 \end{bmatrix}$, $AX = \frac{1}{3}X$ and $AY = \frac{1}{2}Y$.

Solution: $AX = \frac{1}{3}X$ gives $A^{-1}X = 3X = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix}$; similarly, $AY = \frac{1}{2}Y$ gives $A^{-1}Y = \begin{bmatrix} 10 \\ 0 \\ -9 \end{bmatrix}$.

Hence,
$$AZ = X + Y$$
 implies $Z = A^{-1}X + A^{-1}Y = \begin{bmatrix} -3 \\ 6 \\ 9 \end{bmatrix} + \begin{bmatrix} 10 \\ 0 \\ -8 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 1 \end{bmatrix}$. [1 mark]

Question 3: [Marks: 4+4]

a) Find the values of δ for which the following linear system of equations

$$x + y + z + t = 4$$

 $x + \delta y + z + t = 4$
 $x + y + \delta z + (3 - \delta) t = 6$
 $2x + 2y + 2z + (\delta - 5) t = 6$

has: (i) no solution (ii) infinitely many solutions.

Solution: Augmented matrix of the given system
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 4 \\ 1 & \delta & 1 & 1 & 1 & 4 \\ 1 & 1 & 1 & 3 & -\delta & 6 \\ 2 & 2 & 2 & \delta - 5 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 4 \\ 0 & \delta - 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \delta - 1 & -5 & 0 & 0 \\ 0 & 0 & \delta - 7 & -2 & 0 \end{bmatrix}$$
 [2 marks]

Hence, the system has no solution if $\delta \in \{1,7\}$; and infinitely many solutions if $\delta \in \{\}$. [2 marks]

b) Use Cramer's rule to solve the following linear system of equations:

$$x + y = 1$$

 $x + 2y + z = -1$
 $x + 3y - z = 2$.

$$x + 2y + z = -1$$

$$x + 3y - z = 2.$$
Solution: Let *A* denote the matrix of coefficients. Then, $|A| = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & -1 \end{bmatrix} = -3$. So, the

Cramer's is applicable on the given system. Therefore,

$$x = \frac{\begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 2 & 3 - 1 \end{vmatrix}}{\begin{vmatrix} A \end{vmatrix}} = \frac{-4}{-3} = \frac{4}{3}; y = \frac{\begin{vmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}}{\begin{vmatrix} A \end{vmatrix}} = \frac{1}{-3} = \frac{-1}{3} \text{ and } z = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{vmatrix}}{\begin{vmatrix} A \end{vmatrix}} = \frac{5}{-3} = \frac{-5}{3}.$$
[1+1+1 marks]