Discrete Mathematics

Chapter 02

Logic

العرض التقدمي

المناقشة

البحث والاستقصصاء

- Course code: 153 Math
- Course name: Discrete Mathematics
- Level: 1
- Third Semester 2st Year / B.Sc.
- Course Credit: $3+2$ credits

Lectures Reference

Kenneth H. Rosen

Textbook

2019

Discrete
 Mathematics and Its
 Applications

Eighth Edition

Course Outcomes

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms of mathematical thought.
- Acquire logic and proof as the basics for abstract thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.
- Summarize the basic concepts of mathematical logic.

Content

Week Basic and support material to be covered
 (4) Logic: Proposition calculus and connectives, (5) Logic: Truth tables, Propositional Equivalence.

Introduction to Propositional Logic (1/4)

What is Logic?

- Logic is the discipline that deals with the methods of reasoning.
- On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.
- Logical reasoning is used in mathematics to prove theorems.

Introduction to Propositional Logic (2/4)

- The basic building blocks of logic is Proposition
- A proposition (or statement) is a declarative sentence that is either true or false, but not both.
- The area of logic that deals with propositions is called propositional logics.

Introduction to Propositional Logic (3/4)

Examples:

Propositions	Truth value
$2+3=5$	True
$5-2=1$	False
Today is Friday	False
for $x=4 x+3=7$,	True
Cairo is the capital of Egypt	True
Sentences	Is a Proposition
What time is it?	Not propositions
Read this carefully.	Not propositions
$x+3=7$	Not propositions

Introduction to Propositional Logic (4/4)

- We use letters to denote propositional variables p, q, r, s, \ldots
- The truth value of a proposition is true, denoted by T , if it is a true proposition and false, denoted by \mathbf{F}, if it is a false proposition.

Compound Proposition

- Compound Propositions are formed from existing propositions using logical operators.

Negation

Compound Propositions (2/23)

DEFINITION 1

Let p be a proposition. The negation of p, denoted by $\neg p$ (also denoted by \bar{p}, is the statement "It is not the case that p. ."
The proposition $\neg p$ is read "not p." The truth value of the negation of $p, \neg p$, is the opposite of the truth value of p.

Other notations you might see are $\sim p,-p, p^{\prime}, \mathrm{N} p$, and ! p.

Compound Propositions (3/23)

Example

Find the negation of the proposition p: "Cairo is the capital of Egypt"

P: Riyadh is the capital of Saudi Arabia

Compound Propositions (4/23)

Example: Solution

Find the negation of the proposition
p : "Cairo is the capital of
Egypt" The negation is
It is not the case that
$\neg p$: "It is not the case that Cairo is the capital of Egypt"

This negation can be more simply expressed as
$\neg p$: "Cairo is not the capital of Egypt"

Truth Table

Compound Propositions (5/23)

- Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Compound Propositions (5/23)

Truth Table

- Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Negation

Compound Propositions (6/23)

TABLE 1 The	
Truth Table for	
the Negation of a	
Proposition.	
\boldsymbol{p}	$\neg \boldsymbol{p}$
T	F
F	T

Compound Propositions (7/23)

Logical Connectives

DEFINITION 2

Let p and q be propositions. The conjunction of p and q, denoted by $p \wedge q$, is the proposition " p and q." The conjunction $p \wedge q$ is true when both p and q are true and is false otherwise.

Example

TABLE 2 The Truth Table for the Conjunction of Two Propositions.
$p: \quad$ Today is Friday.
q : It is raining today.
p A q : Today is Friday and it is raining today.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \wedge \boldsymbol{q}$
T	T	T
T	F	F
F	T	F
F	F	F

Compound Propositions (8/23)

Logical Connectives

DEFINITION 3

Let p and q be propositions. The disjunction of p and q, denoted by $p \vee q$, is the proposition " p or q." The disjunction $p \vee q$ is false when both p and q are false and is true otherwise.

Example

$p: \quad$ Today is Friday.
q : It is raining today.
$p \vee q$: Today is Friday or it is raining today.

TABLE 3 The Truth Table for the Disjunction of Two Propositions.		
p	q	$p \vee$
T	T	T
T	F	T
F	T	T
F	F	F

Compound Propositions (9/23)

Logical Connectives

DEFINITION 4

Let p and q be propositions. The exclusive or of p and q, denoted by $p \oplus q$ (or $p \operatorname{XOR} q$), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Example

They are parents. p :
They are children. q : $p \oplus q$:They are parents or children but not both.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.

\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \oplus \boldsymbol{q}$
T	T	F
T	F	T
F	T	T
F	F	F

Compound Propositions (10/23)

Logical Connectives

DEFINITION 5

Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).
"if p, then q "
"if p, q "
" p is sufficient for q "
" q if p "
" q when p "
"a necessary condition for p is q " " q unless $\neg p$ "

TABLE 5 5 The Truth Table for the Conditional Statement $\boldsymbol{p} \rightarrow \boldsymbol{q}$.		
\boldsymbol{p}	\boldsymbol{q}	$\boldsymbol{p} \rightarrow \boldsymbol{q}$
T	T	T
T	F	F
F	T	T
F	F	T

" p implies q "
" p only if q "
"a sufficient condition for q is p "
" q whenever p "
" q is necessary for p "
" q follows from $p "$

Compound Propositions (10/23)

Logical Connectives

DEFINITION 5

Let p and q be propositions. The conditional statement $p \rightarrow q$ is the proposition "if p, then q." The conditional statement $p \rightarrow q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \rightarrow q, p$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).
"if p, then q "
"if p, q "
" p is sufficient for q "
" q if p "
" q when p "
"a necessary condition for p is q "
" q unless $\neg p$ "
" p implies q "
" p only if q "
"a sufficient condition for q is p "
" q whenever p "
" q is necessary for p " " q follows from $p "$

Compound Propositioions (11/23)

Logical Connectives

EXAMPLE 1

"If you get 100% on the final, then you will get an A."

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

Compound Propositions (12/23)

Logical Connectives

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

Compound Propositions (12/23)

Logical Connectives

EXAMPLE
2
Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.
"If Maria learns discrete mathematics, then she will find a good job."
"Maria will find a good job when she learns discrete mathematics."

Compound Propositions (13/23)

Logical Connectives

EXAMPLE3

"If today is Friday, then $2+3=6$."

Compound Propositions (13/23)

Logical Connectives

EXAMPLE

"If today is Friday, then $2+3=6$."
is true every day except Friday, even though $2+3=6$ is false.

Compound Propositions (14/23)

Logical Connectives

DEFINITION 6

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition " p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called bi-implications.
" p is necessary and sufficient for q "
"if p then q, and conversely" " p iff q." " p exactly when q."

TABLE 6 The Truth Table for the Biconditional $\boldsymbol{p} \leftrightarrow \boldsymbol{q}$.		
p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	

"You can take the flight if and only if you buy a ticket."

Compound Propositions (15/23)

Truth Tables of Compound Propositions

EXAMPLE

1

Construct the truth table of the compound proposition

$$
(p \vee \neg q) \rightarrow(p \wedge q)
$$

Propositions

Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T				
T	F				
F	T				
F	F				

Compound Proposititions (16/23)

Truth Tables of Compound Propositions

EXAMPLE 1

Construct the truth table of the compound proposition

$$
(p \vee \neg q) \rightarrow(p \wedge q)
$$

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F			
T	F	T			
F	T	F			
F	F	T			

Compoynd Propositions (16/23)

Truth Tables of Compound Propositions

EXAMPLE
1
Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
\boldsymbol{p}	\boldsymbol{q}	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F	T		
T	F	T	T		
F	T	F	F		
F	F	T	T		

Compound Propositions (16/23)

Truth Tables of Compound Propositions

EXAMPLE 1

Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$.

\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	F	T	T	
T	F	T	T	F	
F	T	F	F	F	
F	F	T	T	F	

Compound Propositions (16/23)

Truth Tables of Compound Propositions

EXAMPLE 1

Construct the truth table of the compound proposition $(p \vee \neg q) \rightarrow(p \wedge q)$.

TABLE 7 The Truth Table of $(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$					
\boldsymbol{p}	\boldsymbol{q}	$\neg \boldsymbol{q}$	$\boldsymbol{p} \vee \neg \boldsymbol{q}$	$\boldsymbol{p} \wedge \boldsymbol{q}$	$(\boldsymbol{p} \vee \neg \boldsymbol{q}) \rightarrow(\boldsymbol{p} \wedge \boldsymbol{q})$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Compound Propositions (17/23)
Precedence of Logical Operators

TABLE 8 Precedence of Logical Operators.	
Operator	Precedence
\neg	1
\wedge	2
\vee	3
\rightarrow	4
\leftrightarrow	5

Compound Propositions (18/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p A \neg q$	$(\rightarrow r p A \neg q$

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$q \neg$	$q \neg \mathrm{~A} p$
\mathbf{T}	\mathbf{T}	\mathbf{T}		
\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{T}		
\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{T}		
\mathbf{F}	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}		
\mathbf{F}	\mathbf{F}	\mathbf{F}		

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p A \neg q$	$(\rightarrow r p A \neg q$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}		
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}		
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}		
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}		
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}		
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}		

Compoynd Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \mathrm{~A} \neg q$	$(\rightarrow r p \mathrm{~A} \neg q$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	

Compound Propositions (19/23)

Truth Tables of Compound Propositions

EXAMPLE
2
Construct the truth table of the compound proposition $(p \wedge \neg q) \rightarrow r$

p	q	r	$\neg q$	$p \mathrm{~A} \neg q$	$(\rightarrow r p \mathrm{~A} \neg q$
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}

Compound Propositions (20/23)

Logic and Bit Operations

- Computers represent information using bits. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).

Truth Value	Bit
T	1
F	0

Compound Propositions (21/23)

Computer Bit Operations

- We will also use the notation OR, AND, and XOR for the operators V, A, and \oplus, as is done in various programming languages.

$$
\text { TABLE } 9 \text { Table for the Bit Operators } \boldsymbol{O R} \text {, }
$$ $A N D$, and $X O R$.

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x} \vee \boldsymbol{y}$	$\boldsymbol{x} \wedge \boldsymbol{y}$	$\boldsymbol{x} \oplus \boldsymbol{y}$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

Bit Strings

Propositions

(22/23)

- Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

101010011 is a bit string of length nine.

Compound Propositions (23/23)

Example

- Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 0110110110 and 1100011101

0110110110
1100011101
1110111111 bitwise OR
0100010100 bitwise AND
1010101011 bitwise XOR

Revision

Propositional Logic

Introduction

*A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.
*Are the following sentences propositions?
*Riyadh is the capital of Saudi Arabia. (Yes)
${ }^{*}$ Read this carefully. (No)

* $1+2=3$ (Yes)
* $\mathrm{x}+1=2$ (No)
*What time is it?

DEFINITION

Let p be a proposition. The negation of p , denoted by $\neg \mathrm{p}$, is the statement "It is not the case that p."

The proposition $\neg \mathrm{p}$ is read "not p ." The truth value of the negation of $\mathrm{p}, \neg \mathrm{p}$ is the opposite of the truth value of p.

*Example

* Find the negation of the proposition "Today is Friday." and express this in simple English.

Solution: The negation is "It is not the case that today is Friday."
In simple English, "Today is not Friday." or "It is not Friday today."

* Note: Always assume fixed times, fixed places, and particular people unless otherwise noted.
* Truth table: \quad\begin{tabular}{|c|c|}

\hline \multicolumn{2}{|l|}{| The Truth Table for the |
| :--- |
| Negation of a Proposition. |}

\hlinep \& $\neg p$

\hline T \& F

F \& T

\hline
\end{tabular}

* Logical operators are used to form new propositions from two or more existing propositions. The logical operators are also called connectives.

DEFINITION

Let p and q be propositions. The conjunction of p and q , denoted by $\mathrm{p} \wedge \mathrm{q}$, is the proposition " p and q ". The conjunction $\mathrm{p} \wedge \mathrm{q}$ is true when both p and q are true and is false otherwise.

*Example

* Find the conjunction of the propositions p and q where p is the proposition "Today is Friday." and q is the proposition "It is raining today.", and the truth value of the conjunction.

Solution: The conjunction is the proposition "Today is Friday and it is raining today." The proposition is true on rainy Fridays.

DEFINITION

Let p and q be propositions. The disjunction of p and q , denoted by $\mathrm{p} \vee \mathrm{q}$, is the proposition " p or q ". The conjunction $\mathrm{p} v \mathrm{q}$ is false when both p and q are false and is true otherwise.
${ }^{*}$ Note:
inclusive or : The disjunction is true when at least one of the two
propositions is true.

* E.g. "Students who have taken calculus or computer science can take this class." those who take one or both classes.
exclusive or : The disjunction is true only when one of the

proposition is true.

* E.g. "Students who have taken calculus or computer science, but not both, can take this class." - only those who take one of them.

DEFINITION

Let p and q be propositions. The exclusive or of p and q , denoted by p q , is the proposition that is true when exactly one of p and q is true and is false otherwise.

The Truth Table for the Conjunction of Two Propositions.		
p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

The Truth Table for the Disjunction of Two Propositions.		
p	q	
p	$p q$	
T	T	
T	F	
F	T	
T	T	
F	T	

Conditional Statements

DEFINITION

Let p and q be propositions. The conditional statement $\mathrm{p} \rightarrow \mathrm{q}$, is the proposition "if p , then q ." The conditional statement is false when p is true and q is false, and true otherwise. In the conditional statement $\mathrm{p} \rightarrow \mathrm{q}, \mathrm{p}$ is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence).

- A conditional statement is also called an implication.
- Example: "If I am elected, then I will lower taxes." $\mathrm{p} \rightarrow \mathrm{q}$

implication:

elected, lower taxes.
not elected, lower taxes.
not elected, not lower taxes. elected, not lower taxes.

${ }^{*}$ Example:

* Let p be the statement "Omar learns discrete mathematics." and q the statement "Omar will find a good job." Express the statement $\mathrm{p} \rightarrow \mathrm{q}$ as a statement in English.

Solution: Any of the following -
"If Omar learns discrete mathematics, then he will find a good job.
"Omar will find a good job when he learns discrete mathematics."
"For Omar to get a good job, it is sufficient for him to learn discrete mathematics."
"Omar will find a good job unless he does not learn discrete mathematics."

* Other conditional statements:
* Converse of $p \rightarrow q: q \rightarrow p$
${ }^{*}$ Contrapositive of $p \rightarrow q: \neg q \rightarrow \neg p$
*Inverse of $p \rightarrow q: \neg p \rightarrow \neg q$

DEFINITION

Let p and q be propositions. The biconditional statement $\mathrm{p} \leftrightarrow \mathrm{q}$ is the proposition " p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise.
Biconditional statements are also called bi-implications.
${ }^{*} \mathrm{p} \leftrightarrow \mathrm{q}$ has the same truth value as $(\mathrm{p} \rightarrow \mathrm{q}) \Lambda(\mathrm{q} \rightarrow \mathrm{p})$
*"if and only if" can be expressed by "iff"

* Example:
* Let p be the statement "You can take the flight" and let q be the statement "You buy a ticket." Then $\mathrm{p} \leftrightarrow \mathrm{q}$ is the statement
"You can take the flight if and only if you buy a ticket."

Implication:

If you buy a ticket you can take the flight.
If you don't buy a ticket you cannot take the flight.

The Truth Table for the Biconditional $p \leftrightarrow q$.		
p	9	$p \leftrightarrow$
T	T	T
	F	F
	T	F
	F	T

Truth Tables of Compound Propositions

* We can use connectives to build up complicated compound propositions involving any number of propositional variables, then use truth tables to determine the truth value of these compound propositions.
* Example: Construct the truth table of the compound proposition

$$
(\mathrm{p} \vee \neg \mathrm{q}) \longrightarrow(\mathrm{p} \wedge \mathrm{q})
$$

The Truth Table of $(p \vee \neg q) \rightarrow(p \wedge q)$					
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \rightarrow(p \wedge q)$
T	T	F	T	T	T
T	F	T	T	F	F
F	T	F	F	F	T
F	F	T	T	F	F

Translating English Sentences

* English (and every other human language) is often ambiguous. Translating sentences into compound statements removes the ambiguity.
* Example: How can this English sentence be translated into a logical expression?
"You cannot ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old."

Solution: Let q, r, and s represent "You can ride the roller coaster,"
"You are under 4 feet tall," and "You are older than
16 years old." The sentence can be translated into:

$$
(\mathrm{r} \Lambda \neg \mathrm{~s}) \rightarrow \neg \mathrm{q} .
$$

* Example: How can this English sentence be translated into a logical expression?

"You can access the Internet from campus only if you are a computer science major or you are not a freshman."

Solution: Let a, c, and frepresent "You can access the Internet from campus," "You are a computer science major," and "You are a freshman." The sentence can be translated into:

$$
a \rightarrow(c \vee \neg f) .
$$

2.2 Logic and Bit Operations

* Computers represent information using bits.
* A bit is a symbol with two possible values, 0 and 1 .
* By convention, 1 represents T (true) and 0 represents F (false).
* A variable is called a Boolean variable if its value is either true or false.
* Bit operation - replace true by 1 and false by 0 in logical operations.

Table for the Bit Operators $O R, A N D$, and $X O R$.				
x	y	$x \vee y$	$x \wedge y$	$x \oplus y$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	$中$	0

DEFINITION

A bit string is a sequence of zero or more bits. The length of this string is the number of bits in the string.

* Example: Find the bitwise OR, bitwise AND, and bitwise XOR of the bit string 0110110110 and 1100011101.

Solution:

$$
0110110110
$$

1100011101

1110111111 bitwise OR
0100010100 bitwise AND
1010101011 bitwise XOR

2.3 Logical Equivalences

DEFINITION

The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology. The notation $\mathrm{p} \equiv \mathrm{q}$ denotes that p and q are logically equivalent.
${ }^{*}$ Compound propositions that have the same truth values in all possible cases are called logically equivalent.
${ }^{*}$ Example: Show that $\neg \mathrm{p} v \mathrm{q}$ and $\mathrm{p} \rightarrow \mathrm{q}$ are logically equivalent.

Truth Tables for $\neg p \vee q$ and $p \rightarrow q$				
p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow q$
T	T	F	T	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	${ }^{64}$
T				

* Example: Show that $\neg(\mathrm{p} \rightarrow \mathrm{q})$ and $\mathrm{p} \Lambda \neg \mathrm{q}$ are logically equivalent.

Example: Show that $(\mathrm{p} \wedge \mathrm{q}) \rightarrow(\mathrm{p} \vee \mathrm{q})$ is a tautology.

DEFINITION 2: The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ denotes that p and q are logically equivalent.

TABLE 1 Examples of a Tautology			
and a Contradiction.			
p	$\neg p$	$p \vee \neg p$	$p \wedge \neg p$
T	F	T	F
F	T	T	F

TABLE 2 De
Morgan's Laws.
$\neg(p \wedge q) \equiv \neg p \vee \neg q$
$\neg(p \vee q) \equiv \neg p \wedge \neg q$

| Equivalence | Name |
| :--- | :--- | :--- |
| $p \wedge \mathbf{T} \equiv p$ | Identity laws |
| $p \vee \mathbf{F} \equiv p$ | |
| $p \vee \mathbf{T} \equiv \mathbf{T}$ | Domination laws |
| $p \wedge \mathbf{F} \equiv \mathbf{F}$ | |
| $p \vee p \equiv p$ | Idempotent laws |
| $p \wedge p \equiv p$ | |
| $\neg(\neg p) \equiv p$ | Double negation law |
| $p \vee q \equiv q \vee p$ | Commutative laws |
| $p \wedge q \equiv q \wedge p$ | Associative laws |
| $(p \vee q) \vee r \equiv p \vee(q \vee r)$ | |
| $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$ | Distributive laws |
| $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$ | |
| $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$ | De Morgan's laws |
| $\neg(p \wedge q) \equiv \neg p \vee \neg q$ | |
| $\neg(p \vee q) \equiv \neg p \wedge \neg q$ | Absorption laws |
| $p \vee(p \wedge q) \equiv p$ | |
| $p \wedge(p \vee q) \equiv p$ | Negation laws |
| $p \vee \neg p \equiv \mathbf{T}$ | |
| $p \wedge \neg p \equiv \mathbf{F}$ | |

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

Decide whether the following propositions are tautology or a contradiction or a contingency :

$$
\text { 1) } \quad(p \wedge q) \rightarrow(\neg p \rightarrow q)
$$

(By rules " without using the truth tables")

$$
\begin{array}{rlr}
(p \wedge q) \rightarrow(\neg p \rightarrow q) & \equiv \neg(p \wedge q) \vee(p \vee q) & \text { (Conditional Rule) } \\
& \equiv \neg p \vee \neg q \vee p \vee q & \text { (DeMorgan's Rule) } \\
& \equiv(\neg p \vee p) \vee(\neg q \vee q) & \text { (Commutative and Associative Rules) } \\
& \equiv T \vee T \equiv T & \text { (Negation Rule) }
\end{array}
$$

2) $\quad[\neg p \wedge(p \vee q)] \rightarrow q$
(By rules" without using the truth tables)

$$
\begin{aligned}
{[\neg p \wedge(p \vee q)] \rightarrow q } & \equiv \neg[\neg p \wedge(p \vee q)] \vee q \\
& \equiv p \vee \neg(p \vee q) \vee q \\
& \equiv(p \vee q) \vee \neg(p \vee q) \\
& \equiv T
\end{aligned}
$$

(Conditional Rule)
(DeMorgan's Rule)
(Commutative and Associative Rules)
(Negation Rule)

شُكرًا لحسن استماعكم Thank you

