Question I

- (a) Prove the Archimedean property; for every x > 0, there is a natural number *n* such that $x > \frac{1}{n}$.
- (b) Determine Sup(A) and Inf(A) where $A = \left\{1 \frac{1}{n} : n \in N\right\}$, justify your answer.
- (c) Prove that for any real number *x*, there is a sequence of rational numbers converging to *x*.

Question II

(a) Use the definition of the limit to find the following if exists.

(i)
$$\lim_{n \to \infty} \frac{5n^2 + 1}{3n^2 + 3}$$
.
(ii)
$$\lim_{n \to \infty} a^n$$
, where $0 < a < 1$

(b) If
$$\lim_{n \to \infty} \frac{x_n - 1}{x_n + 1} = 0$$
, then prove that $\lim x_n = 1$.

Question III

Let $x_1 = 1, x_{n+1} = \sqrt{x_n + 3}$. for all $n \in N$.

- (a) Prove (x_n) is monotone.
- (b) Prove (x_n) is bounded.
- (c) Find the limit of (x_n) .

Question IV:

Prove or disprove the following, where (x_n) is a sequence of real numbers.

- (a) Sup(A) = 3, where A = (1,3).
- $(b)\widehat{N}=\emptyset$
- (c) Every sequence has a convergent subsequence.
- (d) There is an unbounded sequence that has a convergent subsequence.