Question I

(a) Prove the Archimedean property; for every $x>0$, there is a natural number n such that $x>\frac{1}{n}$.
(b) Determine $\operatorname{Sup}(A)$ and $\operatorname{Inf}(A)$ where $A=\left\{1-\frac{1}{n}: n \in N\right\}$, justify your answer.
(c) Prove that for any real number x, there is a sequence of rational numbers converging to x.

Question II

(a) Use the definition of the limit to find the following if exists.
(i) $\lim _{n \rightarrow \infty} \frac{5 n^{2}+1}{3 n^{2}+3}$.
(ii) $\lim _{n \rightarrow \infty} a^{n}$, where $0<a<1$
(b) If $\lim _{n \rightarrow \infty} \frac{x_{n}-1}{x_{n}+1}=0$, then prove that $\lim x_{n}=1$.

Question III

Let $x_{1}=1, x_{n+1}=\sqrt{x_{n}+3}$. for all $n \in N$.
(a) Prove $\left(x_{n}\right)$ is monotone.
(b) Prove $\left(x_{n}\right)$ is bounded.
(c) Find the limit of $\left(x_{n}\right)$.

Question IV:

Prove or disprove the following, where $\left(x_{n}\right)$ is a sequence of real numbers.
(a) $\operatorname{Sup}(A)=3$, where $A=(1,3)$.
(b) $\widehat{N}=\varnothing$
(c) Every sequence has a convergent subsequence.
(d) There is an unbounded sequence that has a convergent subsequence.

