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Question 1

1. Prove that for every real number, there exists an integer n such that n—1 < x < n.

Find such n if z = —17,

2. Determine sup(A) and inf(A) where A = {x € R : 2? — 9 < 0}, and justify your
answer.



Question 2 [4+4]

Use the definition of the limit to find the following if they exists.

3
: n
1. hmn_,oo m
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2. lim,,_,o c=, where ¢ > 1.
3. lim,,_,oona™ =0, where 0 < a < 1.



Question 3

Discuss the convergence of the following series:
() o S

n=1 n2+1
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Question 4

1. Find the following limits, if they exist, and prove using the definition of the limit

or sequence characterization:
. 2 . 2
a) lim, o Ig;_l (b) limg oo %



2. Let 2 ¢ 0
ro i xr e
f(a:):{OifmGQ

Prove that f is differentiable at x = 0, and evaluate f’(0).



Question 5

1. Determine a real interval of length % where the equation

5
2? — 6%+ = =0,
2
has a solution. Justify your answer.
2. Prove that if f is continuous on [a,b] and has zero derivative on (a, b), then f is
constant.



3.Use Taylor’s theorem with n = 3 and xy = 0 to obtain a suitable approximation of
the function f(x) =+/1 — z by a polynomial of degree 3.



Question 6
Let

[ lifzeQn[-2,2]
1) = { —lifz e Q°n[-2,2
i) Find the upper and the lower integral of f over [—2,2].

ii) Is f integrable on [—2,2]? justify your answer.

iii) Is | f| integrable on [—2,2]7 justify your answer.



