King Saud University	College of Sciences	Department of	Mathematics
Second Examination	Math 132	Semester 1 (1446)	Time:1H30

Question 1: (12 marks)

1. Let R be the relation on the set $A := \{0, 1, 2, 3, 4, 5, 6, 7\}$ defined as follows:

for
$$x, y \in A$$
, $(xRy) \iff 2x - y = 4$.

- (a) List all ordered pairs of R. (2 marks)
- (b) Find the domain and the image of R. (1 marks)
- (c) Represent the relation R by a matrix. (1 marks)
- 2. Let $S := \{(a, d), (b, a), (b, b), (b, d), (d, a), (d, d)\}$ be a relation on the set $B := \{a, b, c, d\}$.
 - (a) Find $S^{-1} \circ S$. (2 marks)
 - (b) Find $S \circ S^{-1}$. (2 marks)
- 3. Let T be the relation on $\mathbb{Z} \{0\}$ defined as follows:

for
$$m, n \in \mathbb{Z} - \{0\}$$
, $(mTn) \iff \frac{m}{n} > 0$.

Determine whether T is reflexive, symmetric, antisymmetric or transitive. (Justify your answers) (4 marks)

Question 2: (13 marks)

1. Let *E* be the relation on the set \mathbb{Z} defined by:

for
$$a, b \in \mathbb{Z}$$
, $(aEb) \iff 2|(a^2 + b^2)$.

- (a) Show that the relation E is an equivalence relation on \mathbb{Z} . (3 marks)
- (b) Show that [x] = [-x], for all $x \in \mathbb{Z}$. (1 marks)
- (c) Determine whether $2 \in [-4]$. (1 marks)
- (d) Show that $[7] \cap [10] = \emptyset$. (1 marks)
- 2. Let $P := \{(1,1), (1,2), (1,3), (1,5), (2,2), (3,3), (4,2), (4,3), (4,4), (4,5), (5,2), (5,3), (5,5)\}$ be a relation on the set $C := \{1, 2, 3, 4, 5\}.$
 - (a) Show that P is a partial ordering relation on the set C. (3 marks)
 - (b) Draw the digraph of P. (1 marks)
 - (c) Determine whether P is a total order. (1 marks)
 - (d) Draw the Hasse diagram of P on the set C. (2 marks)