King Saud University	College of So	ciences D	epartment of Mathematics
First Examination	Math 132	Semester I (14)	(446) Time:1H30

Question 1: (10 marks)

- 1. Decide whether the following propositions is a tautology or a contradiction or a contingency? $(p \to \neg q) \to (r \land \neg p)$. (3 marks)
- 2. Without using truth tables, prove that the following conditional statement is a Tautology: $[(p \lor q) \land \neg p] \to q. \quad (3 \text{ marks})$
- 3. Without using truth tables, prove the following logical equivalence:

(p)

$$(\rightarrow q) \rightarrow r \equiv (\neg r \rightarrow p) \land (q \rightarrow r).$$
 (3 marks)

- 4. Determine the truth value of each of the following statements. (Justify your answer) (1 mark)
 - (a) $\forall x \in \mathbb{R}; (x^2 < x^4).$
 - (b) $\exists x \in \mathbb{R}; (x^2 + 1 = 0).$

Question 2: (10 marks)

- 1. Use a proof by contradiction to show that $\frac{\sqrt{5}-5}{3}$ is irrational. (Hint use the fact that $\sqrt{5}$ is irrational). (2 marks)
- 2. Let x, y and z be three real numbers. Use a proof by contraposition to show that: if (2x - 4y + 5z = 8) then, $(x \le 5 \text{ or } y \ge 3 \text{ or } z \le 2)$. (2 marks)
- 3. Use mathematical induction to prove the following statement:

$$8 + 20 + 32 + \dots + (12n - 4) = 6n^2 + 2n, \quad \text{for each integer } n, \text{ with } n \ge 1. \quad (3 \text{ marks})$$
4. Consider the sequence $\{u_n\}_{n=0}^{\infty}$ defined as follows:
$$\begin{cases} u_1 = 3\\ u_2 = 6\\ u_{n+1} = 2u_n - u_{n-1} + 2; n \ge 2 \end{cases}$$

Use mathematical induction to prove the following statement:

 $u_n = n^2 + 2$, for each integer *n*, with $n \ge 1$. (3 marks)

Question 3: (5 marks)

- Consider the set A := {1, 2, {1}, {2}, {1, 2, Ø}, {1, {1}}, {2, {2}}, Ø, {Ø}}.
 Determine whether each of the following four statements is true or false.
 (Justify your answer). (2 marks)
 - (a) $S_1: "\{1, 2, \emptyset\} \subseteq A".$
 - (b) S_2 : "{1, {1}} $\subseteq A$ ".
 - (c) $S_3: "\{1, \{\emptyset\}\} \subseteq A".$
 - (d) S_4 : " $A \cap \{1, 2, \emptyset, \{\{1\}, \{2\}\}\} = \{1, 2\}$ ".
- 2. Consider the following three sets C := {1,2,3,4}, D := {2,3}, and E := {(1,2), (1,4), (2,2), (2,4), (4,4), (2,3)}. Find the following sets: (3 marks)
 (i) (C ∩ D) × C. (ii) E \ (C × D). (iii) {∅} × E.