| King Saud University | College of Science | ces           | Department of | of Mathematics |
|----------------------|--------------------|---------------|---------------|----------------|
| Final Examination    | Math 132           | Semester I (1 | 446)          | Time:3 Hours   |

## Question 1: (8 marks)

1. Without using truth tables, prove that the following conditional statement is a Tautology:

 $[(p \to q) \land p] \lor (q \to \neg p).$  (3 marks)

- 2. Let  $n \in \mathbb{N}$ . Show that: if  $n^2$  is odd, then 1 n is even. (2 marks)
- 3. Use mathematical induction to prove the following statement:

 $9+13+17+\dots+(4n+5) = n(2n+7)$ , for each integer *n*, with  $n \ge 1$ . (3 marks)

## Question 2: (15 marks)

1. Let R be the relation on the set  $\mathbb{Z}$  defined by

$$a, b \in \mathbb{Z}; aRb \iff b = -a$$

Decide whether the relation R is reflexive, symmetric, antisymmetric or transitive. Justify your answers. (4 marks)

2. Let E be the relation on the set  $\mathbb{Z} - \{0\}$  defined by

$$m, n \in \mathbb{Z} - \{0\}; mEn \iff 3mn > 0$$

- (a) Show that E is an equivalence relation. (3 marks)
- (b) Find [1] and [-1]. (2 marks)
- 3. Let T be the equivalence relation on  $A := \{1, 2, 3, 4, 5, 6\}$  with equivalence classes  $\{1, 5, 6\}, \{2, 4\}$  and  $\{3\}$ .
  - (a) Draw the digraph of T. (1 marks)
  - (b) List all ordered pairs of T. (2 marks)
- 4. Let P be the partial ordering relation on the set  $B := \{a, b, c, d, e, f\}$  represented by the following Hasse diagram.



- (a) List all ordered pairs of P. (2 marks)
- (b) Is P a total order. Justify your answer. (1 mark)

Question 3: (14 marks)

- 1. Consider the sets  $X := \{a, b, c\}, Y := \{0, 1, 2\}$ , and  $Z := \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 0)\}$ . Find the following sets.
  - (a)  $(X \times Y) Z$ . (1 mark)
  - (b)  $(X \cap Y) \times X$ . (1 mark)
  - (c)  $\{\emptyset\} \times Z$ . (1 mark)
- 2. Let f be the function from  $C := \{a, b, c, d\}$  to  $D := \{0, 1, 2, 3, 4\}$  defined by f(a) = 0, f(b) = 4, and f(c) = f(d) = 1.
  - (a) Find  $f(\{a, b\})$  and  $f(\{a, c, d\})$ . (1 mark)
  - (b) Find  $f^{-1}(\{0,4\})$  and  $f^{-1}(\{1\})$ . (1 mark)
  - (c) Decide whether f is one to one or onto. Justify your answers. (2 marks)
- 3. Let g and h be two function from  $\mathbb{R}$  to  $\mathbb{R}$  defined by g(x) = 2x 1 and h(x) = 3 3x.
  - (a) Find  $g \circ h$  and  $h \circ g$ . (2 marks)
  - (b) Prove that g is a one to one correspondence function. (2 marks)
  - (c) Find  $g^{-1}(x)$ , for all  $x \in \mathbb{R}$ . (1 mark)
  - (d) Decide whether  $h \circ g$  is one to one or onto. Justify your answers. (2 marks)

## Question 4: (3 marks)

- 1. Give the cardinal of each of the following sets.
  - (a)  $A_1 := \{k \in \mathbb{Z}; k \text{ is odd}\}$ . (1 mark)
  - (b)  $A_2 := [0, \infty) \cap \mathbb{Q}^+$ . (1 mark)
- 2. Show that the set  $O := \{a \in \mathbb{Z}; 3|a\}$  is countable. (1 mark)