

FINAL EXAMINATION, SEMESTER II, 2025

DEPT. MATH., COLLEGE OF SCIENCE, KSU

MATH: 107 FULL MARK: 40 TIME: 3 HOURS

Q1. [4+4+4=12]

(a) Find the real numbers x , y , and z such that the matrix

$$A = \begin{bmatrix} 2 & x - y + z & x + y + z \\ 0 & 5 & 0 \\ 0 & 4x + 2y + z & 7 \end{bmatrix}$$

is symmetric.

(b) Determine the invertibility of the matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

and then find the matrix B satisfying the equation $BA = A^2 + 3A$.

(c) Let

$$\left[\begin{array}{cccc} 3 & 1 & \lambda^2 - 6 & \lambda - 3 \\ 1 & 2 & 1 & 0 \\ 2 & 3 & 1 & -1 \end{array} \right]$$

be the augmented matrix of a system of linear equations. Find the value of λ that makes the linear system inconsistent.

Q2. [4+4+4=12]

Let $A(1, 1, 0)$, $B(-1, 2, 1)$, $C(0, 2, -1)$, and $D(3, 1, 1)$ be four points in the space.

(a) Find the equation of the plane passing through A , B , and C .
 (b) Find the area of the triangle ABC .
 (c) Find the volume of the box $ABCD$.

Q3. [4+4+4=12]

(a) Let C be the curve with parametric equations: $x = \sin t + \cos t$, $y = (\sin t)e^t$, $z = \cos t$. Find parametric equations for the tangent line to C at $P(1, 0, 1)$.

(b) If $\mathbf{r}(t) = \langle (t-1)^2, 2t, \ln t \rangle$, ($\frac{1}{2} \leq t \leq 2$) is the position vector of a moving point P , then find its velocity, speed and acceleration at $t = 1$.

(c) Find the tangential and normal components of acceleration for the position vector given by $\mathbf{r}(t) = \langle \cos t, \sin t, e^{-t} \rangle$ at $t = 0$.

Q4. [2+2+3+4+3=14]

(a) If $\omega = e^{-x} \cos y + e^{-y} \cos x$, then show that $\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = 0$.
 (b) If $u = \ln(x+y)$ with $x = e^{-2t}$ and $y = t^3 - t^2 + 5$, use chain rule to find $\frac{du}{dt}$.
 (c) Find the directional derivative of $f(x, y) = x^2 - 5xy + 3y^2$ at the point $P(3, -1)$ in the direction of the vector $\mathbf{a} = \mathbf{i} + \mathbf{j}$.
 (d) If $f(x, y) = x^3 + 3xy - y^3$, find the local extrema and saddle points of f .
 (e) Use Lagrange multipliers to find the minimum value of f where $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraint $x - y + z = 1$.