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Q1: Prove or disprove the following:

. LetX ={(x,y):y=0}U {(x, y):y = i,x > 0} be a subset of R? with standard topology. X is

not connected.
0 True
0 False

II.  Any subspace of a path connected space is path connected.
0 True
O False
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lll.  The component of any space is closed.

0 True
0 False
V. If a space X has a basis consisting of connected subsets, then X is locally connected.
0 True
0 False
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V. Any locally path connected space is path connected.
O True
O False

VI.  LetA = (RX0)U([0,0) X R) be asubset of R? with standard topology, and f:A - Rbe a
function defined by f(x,y) = x. f is a quotient function but neither open nor closed.
0 True
O False
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VII. Let X be a Hausdorff topological space and X* is the partition of X into disjoint subsets whose
union is X. Then X* is Hausdorff.

0 True
O False
VIII. R with discrete topology satisfies the first countability axiom but not the second.
0 True
0 False
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IX. Every normal space is a regular space.
0 True
O False

X.  If fiR™ > R™ is a linear transformation (n,m € N), then forall p € R", D,,f = f.
0 True
O False
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Q2:

Let M be an n —dimensional manifold and N be non-empty open subset of M. Prove that N is
an n —dimensional manifold.
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Q3:

Let f:5% —> R defined by f(x,y,z) = x + y + z. Show that f is a smooth function at p =
1

1 . . ——
(\/_E'\/_E' 0) and find all partial derivatives of f at p.
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Q4.

Let f: M — N and g: N — L be smooth functions. Prove that forp € M, g o f is a smooth
function and,

d,(g°f) =dspged,f.
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Q5:

Let f: R* - R? be a function defined by f(x,y,z,w) = (x + y,z — w). Show that f is a
submersion.

Page 9 of 10



Qeé:

Let f: M —> N be smooth functionandp € M. If d,,f: T,M — TN is an isomorphism.

Prove that there exist open subsets U of p and V of f(p), respectively such that f: U — V' is
a diffeomorphism.
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