

College of Science. Department of Mathematics

كلية العلوم قسم الرياضيات

Final Exam Academic Year 1441-1442 Hijri- First Semester

معلومات الامتحان Exam Information			
Course name	Geometry and Topology		اسم المقرر
Course Code	Math570-1		رمز المقرر
Exam Date	2020-12-29	1442-05-14	تاريخ الامتحان
Exam Time	08: 00	AM	وقت الامتحان
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان
Classroom No.	G013		رقم قاعة الاختبار
Instructor Name	Norah AlSheheri		اسم استاذ المقرر

	معلومات الطالب Student Information	
Student's Name		اسم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Serial Number		الرقم التسلسلي

General Instructions:

- عدد صفحات الامتحان 10 صفحة. (بإستثناء هذه
- Your Exam consists of 10 PAGES (except this paper)
- · يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
- Keep your mobile and smart watch out of the classroom.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4				
5				
6				
7				
8				

Q1: Prove or disprove the following:

l.	Let $X = \{(x,y): y = 0\} \cup \{(x,y): y = \frac{1}{x}, x > 0\}$ be a subset of \mathbb{R}^2 with standard topology. X is not connected. o True o False
II.	Any subspace of a path connected space is path connected. o True o False

III.	The component of any space is closed. o True o False
IV.	If a space X has a basis consisting of connected subsets, then X is locally connected. o True o False

٧.	Any locally path connected space is path connected.
	o True
	o False
	O Taise
VI.	Let $A=(\mathbb{R}\times 0)\cup([0,\infty)\times\mathbb{R})$ be a subset of \mathbb{R}^2 with standard topology, and $f\colon A\to\mathbb{R}$ be a
	function defined by $f(x,y)=x$. f is a quotient function but neither open nor closed. \circ True \circ False
	o True

	union	is X . Then X^* is Hausdorff.
	0	True
	0	False
VIII.		n discrete topology satisfies the first countability axiom but not the second.
	0	True
	0	False

IX.		normai space is a regular space.	
	0	True	
		False	
	0	raise	
<u></u>			
	.c. c. m.1	7	TD 11 D C C
Χ.	It <i>f</i> · IR'		
,	11) . 114	${}^{\circ} \to \mathbb{R}^m$ is a linear transformation $(n, m \in \mathbb{N})$, then for all	$p \in \mathbb{R}^n$, $D_p f = f$.
٨.,		$n o \mathbb{R}^m$ is a linear transformation $(n, m \in \mathbb{N})$, then for all True	$p \in \mathbb{R}^n, D_p f = f.$
7	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
7			$p \in \mathbb{R}^n, D_p f = f.$
,	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
,	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
<i></i>	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
7.1	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
7.	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
7.	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
71	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
7.	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.
	0	True	$p \in \mathbb{R}^n$, $D_p f = f$.

Q2:

Let M be an n —dimensional manifold and N be non-empty open subset of M. Prove that N is an n —dimensional manifold.

Q3:

Let $f: S^2 \to \mathbb{R}$ defined by f(x,y,z) = x+y+z. Show that f is a smooth function at $p=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ and find all partial derivatives of f at p.

Q4:

Let $f:M\to N$ and $g:N\to L$ be smooth functions. Prove that for $p\in M,\ g\circ f$ is a smooth function and,

$$d_p(g\circ f)=d_{f(p)}g\circ d_pf.$$

Q5:

Let $f: \mathbb{R}^4 \to \mathbb{R}^2$ be a function defined by f(x,y,z,w) = (x+y,z-w). Show that f is a submersion.

Q6:

Let $f:M\to N$ be smooth function and $p\in M$. If $d_pf:T_pM\to T_{f(p)}N$ is an isomorphism. Prove that there exist open subsets U of p and V of f(p), respectively such that $f:U\to V$ is a diffeomorphism.