

Department of Statistics & Operations Research College of Science King Saud University Advances in Operations Research Mid Examination Semester 461 (9/10/2024) / Course Coordinator: Prof. Sameh Askar

Time: 2 hours

Semester: First

Date: 06/04/1446

Course: Math 507

[Exam's total mark=30] / Exam content: Parametric, Goal and Fractional Programming

Answer only three questions from the following questions (Two pages)

Q1: Study the variation in the optimum solution with the parameter α where $-\infty < \alpha < \infty$ for the following L.P.P.,

$$\begin{aligned} & \max_{x_1, x_2} Z = (4 - 10\alpha) x_1 + (8 - 4\alpha) x_2 \\ & \text{s.t.} \qquad x_1 + x_2 \le 4, \\ & & 2x_1 + x_2 \le 3 - \alpha \\ & & x_1, x_2 \ge 0. \end{aligned}$$

Where, at $\alpha = 0$ the optimum solution is given in the following table,

	Cj	4	8	0	0	
C_B	BV	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	b
0	<i>x</i> ₃	-1	0	1	-1	1
8	<i>x</i> ₂	2	1	0	1	3
Z_j		16	8	0	8	Z = 24
$\bar{c}_j = c_j - Z_j$		-12	0	0	-8	

Where, x_3 and x_4 are slack variables.

Q2: Solve the following linear goal programming using graphical method. Use the graph below to get the optimum solution.

$$\operatorname{Min} Z = \left(d_3^+ + d_4^+, d_1^+, d_2^-, d_3^- + \frac{8}{5} d_4^- \right)$$

s.t. $g_1: x_1 + x_2 + d_1^- - d_1^+ = 20,$
 $g_2: x_1 + x_2 + d_2^- - d_2^+ = 50,$
 $g_3: x_1 + d_3^- - d_3^+ = 15,$
 $g_4: x_2 + d_4^- - d_4^+ = 20,$
 $x_1, x_2, d_1^+, d_1^-, d_2^+, d_2^-, d_3^+, d_3^-, d_4^+, d_4^- \ge 0$
 g_2
 g_4
 $g_$

Where, the four goals (g_1, g_2, g_3 and g_4) are written in order of priority.

Q3: Use the modified simplex method by Lee to solve the following goal programming problem,

$$\begin{array}{ll} \operatorname{Min} Z = P_1 d_1^- + P_2 (2d_2^- + d_3^-) + P_3 d_1^+ \\ s. t. & P_1: x_1 + x_2 + d_1^- - d_1^+ = 400, \\ & P_2: x_1 + d_2^- = 240, \\ & P_3: x_2 + d_3^- = 300, \\ & x_1, x_2, d_1^+, d_1^-, d_2^-, d_3^- \ge 0 \end{array}$$

Q4: Use the standard simplex method to solve the following linear fractional programming problem,

$$\operatorname{Min} Z(x_1, x_2) = \frac{-2x_1 + x_2 + 2}{x_1 + 3x_2 + 4},$$

s.t. $-x_1 + x_2 \le 4,$
 $2x_1 + x_2 \le 14,$
 $x_2 \le 6,$
 $x_1, x_2 \ge 0$

End of Exam-Good Luck