College of Science.
Department of Mathematics

Final Exam
 Academic Year 1442-1443 Hijri- SecondSemester

Student Information معلومات الطالب

Student Information معلومات الطالب		
Student's Name		اسم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Serial Number		الرقمّ التسلسلي

General Instructions:

- Your Exam consists of 8 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.

الورقة)

- يجب إبقاء الهو اتف والساعات الذكية خارج قاعة الامتحان.
-

هذا الجزء خاص بأستاذ المادة
This section is ONLY for instructor

$\#$	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1				
2				
3				
4	.			
5				
6				
7				
8				

Answer all of the following questions, please make sure that your hand writing is clear:
QI. For all complex numbers z, show that $\sqrt{2} z \geq|\operatorname{Re} z|+|\operatorname{Im} z|$. When do we have equality?
QII. Use de Moivre's formula to find $(\sqrt{3}-i)^{100}$.
QIII. Write the Cauchy-Riemann equations in $x-y$ coordinates. Derive the polar form of C-R equations and use it to show that $\log z$, is analytic. State the maximal possible domain of analyticity, then find the derivative and justify your answer.

QIV. Find all complex numbers z, such that $\cos z=2$.
QV. State the Cauchy integral formula and then prove it.
QVI. Let $f(z)=\frac{\cosh z^{2}-1}{z^{4}}$. Show that $z=0$ is a removable isolated singularity. Then find $f^{(80)}(0)$.

QVII. Use Residue Theorem to calculate

$$
\int_{0}^{\infty} \frac{d x}{x^{4}+1}
$$

QVIII. Use residues to calculate

$$
\int_{-\infty}^{\infty} \frac{x \sin x}{x^{4}+4} d x
$$

