College of Science.
Department of Mathematics

## Second Midterm Exam

Academic Year 1442-1443 Hijri- SecondSemester



- Your Exam consists of $\sqrt{6}$ PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.

هذا الجزء خاص بأستاذ المادة
This section is ONLY for instructor

| $\#$ | Course Learning Outcomes (CLOs) | Related <br> Question (s) | Points | Final <br> Score |
| :--- | :--- | :--- | :--- | :---: |
| 1 |  |  |  |  |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |
| 5 |  |  |  |  |
| 6 |  |  |  |  |
| 7 |  |  |  |  |
| 8 |  |  |  |  |


| QI | QII | QIII | QIV | Total |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

## Question I

Prove or disprove each of the following:

1. If $f(z)$ is analytic and $\operatorname{Im} f(z)$ is constant, then $f(z)$ is constant.
2. If $\operatorname{Re} z_{1}>0$ and $\operatorname{Re} z_{2}>0$, then

$$
\log \left(\frac{z_{1}}{z_{2}}\right)=\log z_{1}-\log z_{2}
$$

3. $\log (-\mathrm{i})^{2}=2 \log (-\mathrm{i})$ where $\log z$ here is the branch with $0<\theta<2 \pi$.

## Question II

A. Use the definition of analytic function to prove that $f(z)=|z|$ is nowhere differentiable.
B. Discuss the analyticity of each of the following functions and find its derivative, $f^{\prime}(z)$, if it exists.

1. $f(z)=\frac{4 \bar{z}+z}{5}$
2. $f(z)=\overline{\sinh z}$
3. $f(z)=\sqrt[3]{r} e^{i \theta / 3}, \quad 0<\theta \leq 2 \pi$

## Question III

1. Prove that the function is $u=e^{-y} \sin x$, is harmonic in its domain and find its harmonic conjugate
2. Solve each of the following equations
a) $e^{2 z+1}=i$
b) $\log \left(\mathrm{z}^{2}-1\right)=\frac{i \pi}{2}$.
3. Prove that, $\cosh ^{2} z-\sinh ^{2} z=1$.

## Question IV

1. Find the domain of analyticity of the function, $f(z)=\log \left(\frac{z-1}{z}\right)$.
2. Determine each of the following:
i) A branch of $\log z$ which is analytic at $z=-2$ and find its derivative there.
ii) A branch of $\log (1-4 z)$ of which is analytic at $z=-2$ and find its derivative there.

## Question IV

A. Find each of the following integrals:

$$
\int_{0}^{\frac{\pi}{4}} e^{-2 z t} d t=
$$

$$
\int_{1}^{3}\left(\frac{1}{t}-i\right) d t=
$$

$$
\int_{0}^{\infty} e^{-i t} d t
$$

