Question 1: [6.5 Marks] Let $\mathcal{R} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}$.

a) Prove that \mathcal{R} is a topology on \mathbb{R} . [3.5]

- **b**) Find all closed subsets of $(\mathbb{R}, \mathcal{R})$. [1]
- c) Find the closure of the subsets: $(1, \infty)$ and (1,2). [1]
- **d**) Find A', where A = (0,1).[1]

Question 2: [6.5 Marks]

a) Show that $\mathcal{B} = \{(-\infty, a) : a \in \mathbb{Q}\}$ is a base for the left ray topology \mathcal{L} on $\mathbb{R}.[1.5]$

b) Find the topology generated by the collection $S = \{\{a\}, \{b, c\}, \{a, c\}\}\}$ on $X = \{a, b, c\}$.[2]

c) Let $A = (0,1) \cup \{2\}$ and $B = \mathbb{Q} \cap [0,1]$ be subsets of $(\mathbb{R}, \mathcal{U})$. Find Int(A), Int(B), Bd(A), Bd(B), Ext(A), and Ext(B).[3]

Question 3: [7.5 Marks]

a) Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Show that

$$\bar{A} = A \cup A'.$$
 [2]

b) If A and B are subsets of a topological space (X, \mathcal{T}) . Show that

$$\overline{A \cap B} \subseteq \bar{A} \cap \bar{B} \tag{1.5}$$

- c) Give an example of each of the following:
 - **1.** A topological space *X* and a proper dense subset of it. [1]

2. A topological space *X* and subsets *A* and *B* of *X* with

 $Int(A) \cup Int(B) \neq Int(A \cup B)$. [1]

3. A topological space *X* and a subset *A* of *X* which is neither open nor closed.[1]

4. A topological space *X* and a subset *A* of *X* where $Bd(A) = \emptyset$. [1]

Question 4: [4.5 Marks]

Prove or disprove each of the following

a) The collection $\{X, \emptyset, (0,1), \{1\}, (0,1]\}$ is a topology on X = [0,1].

b) The usual topology \mathcal{U} is finer than the cofinite topology \mathcal{T}_{cof} on \mathbb{R} .

c) Bd(A) is always closed, where A is a subset of a topological space X.