Question 1: [7.5 Marks] Let $\mathcal{L} = \{\{(-\infty, a) : a \in \mathbb{R}\} \cup \{\mathbb{R}, \emptyset\}.$

a) Prove that \mathcal{L} is a topology on \mathbb{R} . [3.5]

- **b**) Find all closed subsets in $(\mathbb{R}, \mathcal{L})$. [1.5]
- c) Find the closure of the subsets: $(1, \infty), (-\infty, 2], (0,1)$. [1.5]
- **d**) Find A', where A = (0,1).[1]

Question 2: [7 Marks]

a) Show that $\mathcal{B} = \{(a, b) : a, b \in \mathbb{Q}\}$ is a base for \mathcal{U} .[2]

b) Find the topology generated by the collection $S = \{\{a,b\},\{b,c\},\{a,c\}\}$ on $X = \{a,b,c\}$.[2]

c) Let $A = (0,1] \subseteq (\mathbb{R}, \mathcal{U})$ and $B = \{0,1\} \subseteq (\mathbb{R}, \tau_{cof})$. Find Int(A), Int(B), Bd(A), Bd(B), Ext(A), and Ext(B).[3]

Question 3: [6 Marks]

a) If U is open subset of $(\mathbb{R}, \mathcal{U})$, show that U is a union of open intervals.[2]

b) If *A* is a closed subset of a topological space (X, \mathcal{T}) , show that $A' \subseteq A.[1.5]$

- c) Let $\{U_{\alpha}: \alpha \in \Delta\}$ be a collection of closed subsets in a topological space (X, \mathcal{T}) .
 - **1.** show that $\cap \{U_{\alpha} : \alpha \in \Delta\}$ is closed. [1.5]

2. Give an example to show that $\cup \{U_{\alpha} : \alpha \in \Delta\}$ need not be closed.[1]

Question 4: [4.5 Marks]

Prove or disprove each of the following

a) The collection $\{X, \emptyset, \{a\}, \{b, c\}\}\$ is a topology on $X = \{a, b, c, d\}$.

b) The open half line topology $\mathcal C$ is finer than the usual topology $\mathcal U$ on $\mathbb R$.

c) \mathbb{Q} is dense in \mathbb{R} .