Question 1: [12 Marks] Let $\mathcal{L} = \{\mathbb{R}, \emptyset\} \cup \{(-\infty, a) : a \in \mathbb{R}\}.$

a) Prove that \mathcal{L} is a topology on \mathbb{R} . [4]

b) Compare between $\mathcal L$ and the usual topology $\mathcal U$ on $\mathbb R$. [1]

c) Find all closed subsets in $(\mathbb{R}, \mathcal{L})$. [1.5]

Second Semester 1446H **Duration:** 3 hours

d) Using (c), find the closure of the subsets: [0,2), $(1,\infty)$, $(-\infty,0)$. [1.5]

e) If A = (0,1), find the subspace topology \mathcal{L}_A .[1]

f) Is $(\mathbb{R}, \mathcal{L})$ Hausdorff? Why? [1.5]

g) Is $(\mathbb{R}, \mathcal{L})$ metrizable? Why? [1.5]

Question 2: [6 Marks] Consider \mathbb{R} with the usual topology \mathcal{U} , and let $A = (0, \infty)$ and B = [1,2).

- **a)** Show that *A* is an open set. [1]
- **b**) Show that B is not an open set [1]

c) Find Int(A), Int(B), Ext(A), Ext(B), Bd(A), Bd(B), A', and B'. [4]

Question 3: [2.5 Marks] Let $X = \mathbb{R}$ with the usual topology \mathcal{U} , and $Y = \mathbb{R}$ with the half-closed interval topology \mathcal{H} .

a) Give a basis for the product topology on $X \times Y$ [1.5]

b) Find $Int([0,1) \times (1,2))$ [1]

Question 4: [3.5 Marks]

a) Let $X = \{a, b, c, d, e\}$ and let $S = \{\{a, b\}, \{b, c\}, \{d, e\}\}$. Find the topology $\mathcal{T}(S)$ on X generated by S. [2]

b) Show that $\mathcal{B} = \{(a-r, a+r): a \in \mathbb{R}, r > 0\}$ is a base for the usual topology \mathcal{U} on $\mathbb{R}.[1.5]$

Math 373 -- Final Exam

Second Semester 1446H **Duration:** 3 hours

King Saud University College of Science Mathematics department

Question 5: [3 Marks] Let $f: (\mathbb{R}, \mathcal{U}) \to (\mathbb{R}, \mathcal{U})$ be the function given by

$$f(x) = \begin{cases} x+1, & x \ge 0 \\ -1, & x < 0 \end{cases}$$

Is f continuous? Is f open? Justify your answer.

Question 6: [5 Marks] Let $X = \mathbb{R}^2$. Define $d: X \times X \to \mathbb{R}$ by $d((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$.

a. Show that d is a metric for X. [3]

King Saud University College of Science Mathematics department

b. Find and sketch $B_1^d((0,0))$. [2]

Question 7: [8 Marks]

a. Show that a closed subset of a compact topological space is compact. [2]

King Saud University College of Science Mathematics department

b. Let (X, \mathcal{T}) be a compact topological space and $f: A \to \mathbb{R}$ a continuous function. Show that f attains its maximum and minimum [2]

c. Show that (0,1] as a subset of $(\mathbb{R}, \mathcal{U})$ is not sequentially compact. [2]

Math 373 -- Final Exam

Second Semester 1446H **Duration:** 3 hours

King Saud University College of Science Mathematics department

d. Show that every sequentially compact space is limit point compact. [2]