
Math 343 – 14462, February 17, 2025 Midterm Exam 1 Time: 90 minutes 
Name: Student ID # 

 
1. Justify answers and show all work for full credit. 
2. Answer the questions in the space provided. If you run out of room continue on the back of the page.  
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Q1: Determine whether each statement is true or false and justify your answer.    [5pts] 

1. The set of all irrational numbers together with 0 under addition forms a group. 
2. There exists 

n
S  such that 2 (12) . 

3. Let G  be an abelian group and ,x y G  have finite order, then xy has finite order.  
4. A group with only a finite number of subgroups is finite. 
5. There is an element of order 4 in ℝ∗ the group of nonzero real numbers under multiplication. 
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[6pts]Q2: a) Show that if 𝛼, 𝛽 ∈ 𝑆𝑛 commute and 𝑖 ∈ {1,2, . . . , 𝑛} is fixed by 𝛼 , i.e. 𝛼(𝑖) = 𝑖 then 𝛽(𝑖) is also 
fixed by 𝛼. 
 

 

 

 

 

 

b) Let 
8

(1643)(3547) S . 
(1) Write  as a product of disjoint cycles and find its order. 
(2) Write  as a product of transpositions and determine if  is even or odd. 
(3) Compute 1  and 22 . 
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[3pts]Q3: Prove that (ℤ,∗) is a group where 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 − 1. 
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[3pts]Q4: a) Let G be a group. (i) Define the center ( )Z G  and show that it is a subgroup. (ii) Give an example 
of a group having a proper nontrivial center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Let 𝐺 be a group and 𝐻 a nonempty subset that contains 𝑥−1𝑦 whenever 𝑥, 𝑦 ∈ 𝐻. Show 𝐻 is a subgroup. 
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[3pts]Q5: Let G  be a group.  

a) Show that | | | |ab ba  for any ,a b G . 

 

 

 

 

 

 

 

 

 

 

b) Show that if 1 1xy x y  for all ,x y G  then G  must be abelian. 
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