Math 343 – 14462, February 17, 2025	Midterm Exam 1	Time: 90 minutes
Name:	Student ID #	

[5pts]

1. Justify answers and show all work for full credit.

Answer the questions in the space provided. If you run out of room continue on the back of the page.

Q1: Determine whether each statement is true or false and justify your answer.

- 1. The set of all irrational numbers together with 0 under addition forms a group.
- 2. There exists $\sigma \in S_n$ such that $\sigma^2 = (12)$.
- 3. Let G be an abelian group and $x, y \in G$ have finite order, then xy has finite order.
- 4. A group with only a finite number of subgroups is finite.
- 5. There is an element of order 4 in \mathbb{R}^* the group of nonzero real numbers under multiplication.

1. False: Not closed, (1-12) + VZ = tal. 2. False: $\alpha^2 = \alpha . \alpha$ is even $\forall \alpha \in S_n$ but (12) is odd. 3. True: $(xy) = x^{[N] \cdot [y]}$, $y^{[X] \cdot [y]} = (x^{[N]})^{[N]}$, $(y^{[y]})^{[X]} = e^{[y]}$, $e^{[X]} = c.c = e$. Since Gir abelian 4. True: Note first that an infinite cyclic group < as has infinitely money distinct subgps, namely, <a>, <a²>, <a²>, ..., Assume G is a gp with finite by many Subgp => G has only timite number of cyclic Subgp and none of them is infinite. But Gis their union, So it must be finite. 5. Falle, If $x \in \mathbb{R}^{+}$ and |x|=4, thus $x^{4}=1 \implies x^{4}-1=0 \implies (x^{2}-1)(x^{2}+1)=0 \implies x=\pm 1$ but (1)=1 and 1-1=2.

[6pts]Q2: a) Show that if $\alpha, \beta \in S_n$ commute and $i \in \{1, 2, ..., n\}$ is fixed by α , i.e. $\alpha(i) = i$ then $\beta(i)$ is also fixed by α .

$$\alpha (B(i)) = (\alpha \beta)(i) = (\beta \alpha)(i) = \beta(\alpha(i)) = \beta(i)$$

$$dd d \sigma \sigma \qquad \alpha \beta = \beta \alpha \qquad dd d \sigma \sigma \qquad \alpha(i) = i$$

- b) Let $\sigma = (1643)(3547) \in S_8$.
- (1) Write σ as a product of disjoint cycles and find its order.
- (2) Write σ as a product of transpositions and determine if σ is even or odd.
- (3) Compute σ^{-1} and σ^{22} .

(1) $\mathcal{O} = (1647)(35) \implies |\mathcal{O}| = l.c.m(4,2) = 4.$

(2)
$$\mathcal{Q} = (17)(14)(16)(35) \implies \mathcal{Q}$$
 is even.

$$(3) \quad \sigma'' = (53)(7461) = (35)(1746)$$
$$\sigma''' = \sigma'' \sigma'' = (\sigma'')^{5} \sigma'' = (1)\sigma'' = (14)(67)$$

[3pts]Q4: a) Let G be a group. (i) Define the center Z(G) and show that it is a subgroup. (ii) Give an example of a group having a proper nontrivial center.

b) Let G be a group and H a nonempty subset that contains $x^{-1}y$ whenever $x, y \in H$. Show H is a subgroup. () $H \neq \phi$ given-() $L \neq \phi$ given-() $L \neq \chi \in H$. () $x, \chi \in H \Rightarrow x^{-1}x \in H \Rightarrow e \in H$ () $L \neq \chi \in H$. () $x, \chi \in H \Rightarrow x^{-1}x \in H \Rightarrow e \in H$ () $x, \chi \in H \Rightarrow x^{-1}x \in H \Rightarrow e \in H$ () $x, \chi \in H \Rightarrow x^{-1}x \in H \Rightarrow e^{-1}x^{-1} \in H$. () $x, \chi \in H \Rightarrow x^{-1}y \in H \Rightarrow x^{-1}y \in H \Rightarrow x^{-1}y \in H$. () $L \neq \chi, \chi \in H$. () $x, \chi \in H \Rightarrow x^{-1}y \in H \Rightarrow x^{-1}y \in H \Rightarrow x^{-1}y \in H$. () x = 1() x [3pts]Q5: Let G be a group.

Note that $(ah)^{m} = e \iff (ah)^{m} ab = ab \iff a(ba)^{m} b = ab \iff (ba)^{m} = b$ $(ba)^{m} = e$. $(ba)^{m} =$

b) Show that if $xy = x^{-1}y^{-1}$ for all $x, y \in G$ then G must be abelian.

Note for any
$$x, y \in G$$
, $x, e \in G \Longrightarrow x.e = x.e = x.e = x[x]$
Now, for any $x, y \in G$, we have $xy = (xy) = 5x' = 5x$.