Math 343 – 14462, February 17, 2025	Midterm Exam 1	Time: 90 minutes
Name:	Student ID #	

[5pts]

- 1. Justify answers and show all work for full credit.
- 2. Answer the questions in the space provided. If you run out of room continue on the back of the page.

Q1: Determine whether each statement is true or false and justify your answer.

- 1. The set of all irrational numbers together with 0 under addition forms a group.
- 2. There exists $\sigma \in S_n$ such that $\sigma^2 = (12)$.
- 3. Let G be an abelian group and $x, y \in G$ have finite order, then xy has finite order.
- 4. A group with only a finite number of subgroups is finite.
- 5. There is an element of order 4 in \mathbb{R}^* the group of nonzero real numbers under multiplication.

[6pts]Q2: a) Show that if $\alpha, \beta \in S_n$ commute and $i \in \{1, 2, ..., n\}$ is fixed by α , i.e. $\alpha(i) = i$ then $\beta(i)$ is also fixed by α .

- b) Let $\sigma = (1643)(3547) \in S_{_8}$.
- (1) Write σ as a product of disjoint cycles and find its order.
- (2) Write σ as a product of transpositions and determine if σ is even or odd.
- (3) Compute σ^{-1} and σ^{22} .

[3pts]Q3: Prove that (\mathbb{Z} ,*) is a group where a * b = a + b - 1.

[3pts]Q4: a) Let G be a group. (i) Define the center Z(G) and show that it is a subgroup. (ii) Give an example of a group having a proper nontrivial center.

b) Let *G* be a group and *H* a nonempty subset that contains $x^{-1}y$ whenever $x, y \in H$. Show *H* is a subgroup.

[3pts]Q5: Let G be a group.

a) Show that |ab| = |ba| for any $a, b \in G$.

b) Show that if $xy = x^{-1}y^{-1}$ for all $x, y \in G$ then G must be abelian.