
Math 343 – 14462, May 18, 2025 Final Exam Time: 3 hours 
Name: Student ID # 

 
1. Justify answers and show all work for full credit. 
2. Answer the questions in the space provided. If you run out of room continue on the back of the page.  

Question 1 2 3 4 5 Total 

Grade 7.5 8 7.5 9 8 40 
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[7.5pts]Q1: Determine whether each statement is true or false and justify your answer.          

1. The union of two subgroups 𝐾, 𝐻 of a group 𝐺 is a subgroup. 
2. If 𝜏 is a cycle, then 𝜏2 is also a cycle. 
3. If 𝑁 is a normal subgroup of 𝐺 such 𝑁 and 𝐺 𝑁⁄   are both abelian then 𝐺 must be abelian. 
4. There are exactly 36  automorphisms on ℤ37. 
5. 𝐴5 has no subgroup of order 16, 17, 18, or 19. 
6. If 𝐺 is a group and 𝑥, 𝑦 ∈ 𝐺 are conjugates, then |𝑥| = |𝑦|. 
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[8pts]Q2:  Let 𝐺 and 𝐺′  be groups. 
(i) Define what it means for a subgroup of 𝐺 to be normal. Give an example of a group 𝐺 and two 
subgroups, one that is normal and one that is not normal. 
(ii) Define what it means for a map 𝜑: 𝐺 → 𝐺′  to be a homomorphism and show that the ker(𝜑) is a 
normal subgroup of 𝐺.  
(iii) Show that there is no surjective homomorphism from 𝑆4 onto 𝐷4. 
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[7.5pts]Q3: Let  𝜶 = (1 2 3
2 4 6  4 5 6

1 5 7   7 8
8 3) ∈ 𝑆8        

i) Write 𝜶 as a product of disjoint cycles. 
ii) Write 𝜶 as a product of transpositions (2-cycles). 
iii) Deduce if 𝜶 is an even or odd permutation. 
iv) Find 𝜶−1 . 
v) Find 𝜶(134)𝜶−1. 
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[9pts]Q4: (i) In ℤ15 ⊕ ℤ16, what is |(6,6)|? 
    (ii) Let 𝐺 be a cyclic group of order 2025. How many elements of order 25 does 𝐺 have? 
    (iii) List all elements of order 2 in ℤ8 ⊕ ℤ2. 
    (iv) How many abelian groups (up to isomorphism) are there of order 60. List all groups. 
     (v) Prove that a group of order 𝑝2 is abelian, where 𝑝 is a prime number. 
    (vi) Let G be a noncyclic group of order 21. How many Sylow 3-subgroups does G have? 
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[8pts]Q5: (i) Classify all finite abelian groups of order 8. Decide with justification which one is isomorphic to 
𝑈(15). 

(ii) Let 𝐻 be the following subgroup of 𝑆6. 

{(1), (12)(34), (1234)(56), (13)(24), (1432)(56), (56)(13), (14)(23), (24)(56)}. 

a. Find the order of each element of 𝐻.  
b. Compute 𝜎𝜏 and 𝜏𝜎 , where 𝜎 = (1234)(56) and 𝜏 = (56)(13). 
c. Show that if 𝐺 is a nonabelian group of order 8, then |𝑍(𝐺)| must be 2. Classify the group 𝐻 𝑍(𝐻)⁄ . 
d. Up to isomorphism there are only two nonabelian groups of order 8, namely 𝐷4 the dihedral group and 
 𝑄8 = {±1, ±𝑖, ±𝑗, ±𝑘} with multiplication given by 𝑖𝑗 = 𝑘, 𝑗𝑘 = 𝑖, 𝑘𝑖 = 𝑗, and 𝑖2 = 𝑗2 = 𝑘2 = −1. Explain 
which one must be isomorphic to 𝐻? 
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