Question number	I	II	III	IV	Total
Mark					

Question 1:
(a) Let $\sum_{n} x_{n}$ be a convergent series of real numbers. Prove that $\lim _{n \rightarrow \infty} x_{n}=$ 0.
(b) Is the converse of (a) true? Justify your answer.
(c) Test the following series for convergence:
(i) $\left(\sum_{n}(-1)^{n} \frac{\log n}{n}\right.$
(ii) $\sum \frac{1}{\left(n^{3}-1\right)}$

Question 2:

(a) Prove that if a series is absolutely convergent, then it is convergent.
(b) Is the converse of (a) true? Justify and prove your answer.

Question 3:

Find the following if exist (prove using definition of limit or sequence characterization)
(a) $\lim _{x \rightarrow 0}\left(\cos \frac{1}{2 x}\right)$
(b) $\lim _{x \rightarrow \infty} \operatorname{sgn}(x)$
(c) $\lim _{x \rightarrow-\infty}\left(\frac{1}{x}\right)$

Question 4:

Consider the function:

$$
f(x)= \begin{cases}\frac{1}{x-3} & x>3 \\ \frac{1}{x-4} & x \leq 3\end{cases}
$$

(a) Study the continuity of f on R and specify the discontinuities of f.
(b) Are the discontinuities of f removable? Explain your answer.

BONUS: Find using definition of limit

$$
\lim _{x \rightarrow \infty}(-2 x) .
$$

