Final Exam

Second Semester 1446

1. Question 1 [2+4+4+3=13]

(a) Determine sup A and inf A where
$$A = \left\{2 + \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$$

- (b) Prove by definition that $\lim \frac{3n+1}{2n+2} = \frac{3}{2}$
- (c) Prove that (x_n) is a Cauchy sequence if

$$|x_{n+1} - x_n| < \frac{1}{2^n}$$

(d) Determine weather the series is convergent or not

$$\sum \frac{n^3}{3^n}$$

2. Question 2 [4+3+3+4=14]

(a) Find the following limits it they exist.

1.
$$\lim_{x \to 0} \frac{x^2 (1 + \sin x)}{(x + \sin x)^2}$$

2.
$$\lim_{x \to 0^+} \left(1 + \frac{2}{x}\right)^x$$

- (b) Let $f, g: [a, b] \to \mathbb{R}$ be continuous and f(a) < g(a), f(b) > g(b). Show that there is $c \in (a, b)$ such that f(c) = g(c).
- (c) Show that the function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .
- (d) Use the definition to show that $f(x) = \sqrt{x^2 + 1}$ is differentiable on \mathbb{R} , then prove that there is $c \in (0, 1)$ such that

$$\sqrt{2} - 1 = \frac{c}{\sqrt{c^2 + 1}}$$

3. Question 3 [5+4+4=13]

4. (a) Determine wether f is Riemann integrable over [0, 1] and evaluate the integral (if it exists) using Riemann sum.

1.
$$f(x) = 2x - 1$$

2.
$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^c \end{cases}$$

(b) Determine the pointwise limit of $f_n(x) = \frac{x}{nx+1}$ on [0, 1], then decide whether the convergence is uniform.

(c) Discuss the uniform convergence of the series $\sum_{n=1}^{\infty} \cos\left(\frac{x}{n^2}\right), \quad x \in [-5, 2]$

Good Luck

Math 280