

## College of Science. **Department of Mathematics**

## Final Exam Academic Year 1446 Hijri- SecondSemester

| معلومات الامتحان Exam Information |                         |              |                   |  |  |  |  |
|-----------------------------------|-------------------------|--------------|-------------------|--|--|--|--|
| Course name                       | Introducion             | اسم المقرر   |                   |  |  |  |  |
| Course Code                       | 244                     | رمز المقرر   |                   |  |  |  |  |
| Exam Date                         | 2025-05-15              | 1446-11-17   | تاريخ الامتحان    |  |  |  |  |
| Exam Time                         | 08: 0                   | وقت الامتحان |                   |  |  |  |  |
| Exam Duration                     | 3 hours                 | ثلاث ساعات   | مدة الامتحان      |  |  |  |  |
| Classroom No.                     | G050                    |              | رقم قاعة الاختبار |  |  |  |  |
| Instructor Name                   | Prof. Haifa Bin Jebreen |              | اسم استاذ المقرر  |  |  |  |  |

| معلومات الطالب Student Information |  |                |  |  |
|------------------------------------|--|----------------|--|--|
| Student's Name                     |  | اسم الطالب     |  |  |
| ID number                          |  | الرقم الجامعي  |  |  |
| Section No.                        |  | رقم الشعبة     |  |  |
| Serial Number                      |  | الرقم التسلسلي |  |  |

## **General Instructions:**

تعليمات عامة:

- Your Exam consists of 1 PAGES (except this
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان 1 صفحة. (بإستثناء هذه الورقة)
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

## هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

| # | Course Learning Outcomes (CLOs) | Related<br>Question (s) | Points | Final<br>Score |
|---|---------------------------------|-------------------------|--------|----------------|
| 1 | 1.1                             | 1(a)                    |        |                |
| 2 | 1.2                             | 2,3                     |        |                |
| 3 | 2.1                             | 2,3                     |        |                |
| 4 | 2.2                             | 1,2,3                   |        |                |
| 5 |                                 |                         |        |                |
| 6 |                                 |                         |        |                |
| 7 |                                 |                         |        |                |
| 8 |                                 |                         |        |                |

1. Question 1 [2+4+4+3=13]

- (a) Determine  $\sup A$  and  $\inf A$  where  $A = \left\{2 + \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$
- (b) Prove by definition that  $\lim \frac{3n+1}{2n+2} = \frac{3}{2}$
- (c) Prove that  $(x_n)$  is a Cauchy sequence if

$$|x_{n+1} - x_n| < \frac{1}{2^n}$$

(d) Determine weather the series is convergent or not

$$\sum \frac{n^3}{3^n}$$

2. **Question 2** [4+3+3+4=14]

- (a) Find the following limits it they exist.
  - 1.  $\lim_{x \to 0} \frac{x^2(1+\sin x)}{(x+\sin x)^2}$
  - 2.  $\lim_{x \to 0^+} \left(1 + \frac{2}{x}\right)^{x'}$
- (b) Let  $f, g : [a, b] \to \mathbb{R}$  be continuous and f(a) < g(a), f(b) > g(b). Show that there is  $c \in (a, b)$  such that f(c) = g(c).
- (c) Show that the function  $f(x) = x^2$  is not uniformly continuous on  $\mathbb{R}$ .
- (d) Use the definition to show that  $f(x) = \sqrt{x^2 + 1}$  is differentiable on  $\mathbb{R}$ , then prove that there is  $c \in (0,1)$  such that

$$\sqrt{2} - 1 = \frac{c}{\sqrt{c^2 + 1}}$$

3. Question 3 [5+4+4=13]

4. (a) Determine wether f is Riemann integrable over [0,1] and evaluate the integral (if it exists) using Riemann sum.

1. 
$$f(x) = 2x - 1$$

2. 
$$f(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^c \end{cases}$$

- (b) Determine the pointwise limit of  $f_n(x) = \frac{x}{nx+1}$  on [0,1], then decide whether the convergence is uniform.
- (c) Discuss the uniform convergence of the series  $\sum_{n=1}^{\infty} \cos\left(\frac{x}{n^2}\right)$ ,  $x \in [-5, 2]$

Good Luck