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1| 1.1  Explain fundamental concepts of real Analysis. QLQ3(1)(2)
2| 1.2 Describe some properties of functions. Q2,Q3
3] 2.1 Models problems with functions Q2,0Q3,0Q4
4(2.2 Solve problems of convergence, limit, continuity and Q1,0Q2,Q3,
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Question I. [24+3+3+3]

(1) Let A = {nLH ‘n € N}. Determine sup(A) and inf(A) if they exist. Justify your
answer.

(2) Test the convergence of the following series:
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Question II. [242+42+4]

(1) Evaluate the following limits:
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(a) lim$_>_oo| E

(b) lim, o+ ;%5

sinz
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(C) hmm%O‘*‘ €T



(2) Let

sin x if ¢ 0
fay =4 T
1 ifz=0

Study the continuity of f on R. Justify your answer.
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Question III. [3+3+3+3|
(1) Let f: I — R be differentiable at ¢ € I. Prove that f is continuous at c.

(2) If the function f has an extremum on the interval (a,b) at the point ¢ and f is
differentiable at ¢, then f’(¢) = 0.



(3) Show that:
a) f(z) = 22 is not uniformly continuous on [1,00).

b) f(z) = sinz is uniformly continuous on R.
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Question IV. [3+2+2]

(1) Evaluate fol 22 dz using Riemann sums.



(2) Prove that if f is Riemann integrable, then |f| is Riemann integrable.

(3) Is the converse of (2) true? Justify your answer.



