King Saud University:
Second Semester 1444 H
Time: 120 Mins.

Mathematics Department
Solution of Midterm Examination

Question 1: Show that one of the possible iterative formula for finding the approximation of the root of the nonlinear equation $1-\sin x=x$ is

$$
x_{n+1}=\frac{\lambda x_{n}+1-\sin x_{n}}{\lambda+1}, \quad \lambda \neq-1, \quad n \geq 0
$$

Find a constant λ so that this iterative formula will give at least quadratic convergence for finding the root near $\alpha=0.5$ of the nonlinear equation $1-\sin x=x$. Find x_{2} if $x_{0}=0.45$. (6)

Solution. Given the nonlinear equation $1-x-\sin x=0$, which can be written as

$$
x=1-\sin x \quad \text { or } \quad x+\lambda x-\lambda x=1-\sin x \quad \text { or } \quad x(1+\lambda)=\lambda x+1-\sin x,
$$

and from this we have

$$
x=\frac{\lambda x+1-\sin x}{1+\lambda}=g(x)
$$

Taking the derivative of $g(x)$, gives

$$
g^{\prime}(x)=\frac{\lambda-\cos x}{1+\lambda}
$$

Hence for rapid convergence,

$$
g^{\prime}(\alpha)=\frac{\lambda-\cos \alpha}{1+\lambda}=0
$$

we obtain, $\lambda=\cos \alpha=\cos 0.5=0.8776$.
Now using $x_{0}=0.45$, we have

$$
\begin{aligned}
& x_{1}=\frac{0.8776 x_{0}+1-\sin x_{0}}{1.8776}=0.5113 \\
& x_{2}=\frac{0.8776 x_{1}+1-\sin x_{1}}{1.8776}=0.5110
\end{aligned}
$$

the second approximation which is corrected up to 3 decimal places.

Question 2: Successive approximations x_{n} to the desired root are generated by the scheme

$$
x_{n+1}=\frac{e^{x_{n}}\left(x_{n}+1\right)+2 x_{n}^{2}}{e^{x_{n}}+3 x_{n}}, \quad n \geq 1
$$

Find $f(x)=0$ and then use secant method to find the second approximation x_{3} of the root $\alpha=-0.7035$, starting with $x_{0}=-0.5$ and $x_{1}=-0.25$. Compute the relative error.

Solution. Given

$$
\begin{gathered}
x_{n+1}=\frac{e^{x_{n}}\left(x_{n}+1\right)+2 x_{n}^{2}}{e^{x_{n}}+3 x_{n}}=g\left(x_{n}\right), \quad n \geq 1 . \\
x=\frac{e^{x}(x+1)+2 x^{2}}{e^{x}+3 x}=g(x),
\end{gathered}
$$

$$
\begin{gathered}
g(x)-x=\frac{e^{x}(x+1)+2 x^{2}}{e^{x}+3 x}-x=0, \\
g(x)-x=\frac{e^{x}(x+1)+2 x^{2}-x\left(e^{x}+3 x\right)}{e^{x}+3 x}=0
\end{gathered}
$$

and after simplifying, we obtained

$$
g(x)-x=\frac{\left(x e^{x}+e^{x}+2 x^{2}-x e^{x}-3 x^{2}\right)}{e^{x}+3 x}=\frac{\left(e^{x}-x^{2}\right)}{e^{x}+3 x}=-\frac{\left(x^{2}-e^{x}\right)}{e^{x}+3 x}=x^{2}-e^{x}=0 .
$$

Thus

$$
f(x)=g(x)-x=x^{2}-e^{x}=0,
$$

and we can check

$$
f(-1)=0.6321, \quad f(0)=-1, \quad f(-1) f(0)=-0.6321<0,
$$

so $f(x)$ has a zero in $[-1,0]$. Applying secant iterative formula to find the approximation of this zero, we use the formula

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{2}-e^{x_{n}}\right)}{\left(x_{n}^{2}-e^{x_{n}}\right)-\left(x_{n-1}^{2}-e^{x_{n-1}}\right)}, \quad n \geq 1
$$

Finding the second approximation using the initial approximations $x_{0}=-0.5$ and $x_{1}=-0.25$, we get

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{2}-e^{x_{1}}\right)}{\left(x_{1}^{2}-e^{x_{1}}\right)-\left(x_{0}^{2}-e^{x_{0}}\right)}=-0.7477, \\
& x_{3}=x_{2}-\frac{\left(x_{2}-x_{1}\right)\left(x_{2}^{2}-e^{x_{2}}\right)}{\left(x_{2}^{2}-e^{x_{2}}\right)-\left(x_{1}^{2}-e^{x_{1}}\right)}=-0.6946 .
\end{aligned}
$$

The relative error is,

$$
\frac{\left|\alpha-x_{3}\right|}{|\alpha|}=\frac{|-0.7035-(-0.6946)|}{|-0.7035|}=0.0127 .
$$

Question 3 Show that Newton's iterative formula for finding the approximation of the root $\alpha=\pi$ of the nonlinear equation $f(x)=\tan x=0$ is

$$
x_{n+1}=x_{n}-\sin \left(x_{n}\right) \cos \left(x_{n}\right), \quad n \geq 0 .
$$

Find the absolute error $\left|\alpha-x_{2}\right|$ using $x_{0}=3.0$. Find the rate of convergence of the developed iterative formula.

Solution. As $f(x)=\tan x$ and so $f^{\prime}(x)=\sec ^{2} x$, and

$$
f(\pi)=\tan (\pi)=0, \quad f^{\prime}(\pi)=\sec ^{2}(\pi) \neq 0,
$$

therefore, the root is the simple root of the given nonlinear equation and the best numerical method is Newton's method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\tan \left(x_{n}\right)}{\sec ^{2}\left(x_{n}\right)}=x_{n}-\sin \left(x_{n}\right) \cos \left(x_{n}\right), \quad n \geq 0 .
$$

To find the second approximation to the root by using above scheme using $x_{0}=3.0$ and $n=1,2$, we obtain

$$
\begin{aligned}
& x_{1}=x_{0}-\sin \left(x_{0}\right) \cos \left(x_{0}\right)=3.1397 \\
& x_{2}=x_{1}-\sin \left(x_{1}\right) \cos \left(x_{1}\right)=3.1416
\end{aligned}
$$

which is the required second approximation and

$$
\left|\pi-x_{2}\right|=|3.1416-3.1416|=0, \quad \text { (up to } 4 \text { decimal places) }
$$

gives the required absolute error in the solution.
Since the fixed-point form of the Newton's method is

$$
g(x)=x-\frac{\tan x}{\sec ^{2} x}=x-\sin x \cos x
$$

therefore,

$$
\begin{aligned}
g(x) & =x-\sin x \cos x, \quad g(\pi)=\pi-\sin (\pi) \cos (\pi)=\pi \\
g^{\prime}(x) & =1+\sin ^{2}(x)-\cos ^{2}(x)=0, \quad g^{\prime}(\pi)=1+\sin ^{2}(\pi)-\cos ^{2}(\pi)=1-1=0 \\
g^{\prime \prime}(x) & =4 \sin (x) \cos (x), \quad g^{\prime \prime}(x)=4 \sin (\pi) \cos (\pi)=4(0)(-1)=0 \\
g^{\prime \prime \prime}(x) & =4 \cos ^{2}(x)-4 \sin ^{2}(x), \quad g^{\prime \prime \prime}(x)=4 \cos ^{2}(\pi)-4 \sin ^{2}(\pi)=4(-1)^{2}-0=4 \neq 0
\end{aligned}
$$

Hence the rate of convergence of the Newton's method is cubic.

Question 4: Use LU decomposition by Dollittle's method to find the value(s) of nonzero α for which the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \tag{6}\\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right)
$$

is inconsistent and consistent. Solve the consistent system.

Solution. Since we know that

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right)\left(\begin{array}{rrr}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=L U
$$

Using $m_{21}=\frac{2 \alpha}{\alpha}=2=l_{21}, m_{31}=\frac{1}{\alpha}=l_{31}$, and $m_{32}=\frac{(3 \alpha-4)}{(-9 \alpha)}=l_{32}(\alpha \neq 0)$, gives

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & \frac{(3 \alpha-4)}{\alpha} & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right) \equiv\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right)
$$

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{\alpha} & \frac{(3 \alpha-4)}{(-9 \alpha)} & 1
\end{array}\right)\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right),
$$

which is the required decomposition of A. The given linear system has no solution or infinitely many solution if

$$
\operatorname{det}(A)=\operatorname{det}(U)=\frac{-9 \alpha\left(\alpha^{2}-1\right)}{\alpha}=-9\left(\alpha^{2}-1\right)=\left(\alpha^{2}-1\right)=0,
$$

which gives, $\alpha=-1$ or $\alpha=1$.
To find the solution of the given system when $\alpha=-1$ and it gives

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
-2 & -1 & 2 \\
1 & 3 & -1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -\frac{7}{9} & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -\frac{7}{9} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
3 \\
5
\end{array}\right) .
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,4]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
4
\end{array}\right) .
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=4$, which is not possible, and so no solution. To find the solution of the given system when $\alpha=1$ and it gives

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
2 & -1 & 2 \\
1 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{9} & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{9} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right)
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,0]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
0
\end{array}\right) .
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=0$, which means we have many solutions. Performing backward substitution and using $x_{3}=t$, yields

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =6 \\
-9 x_{2} & =-9
\end{aligned}
$$

and it gives, $\left[x_{1}, x_{2}, x_{3}\right]^{T}=[2-t, 1, t]^{T}$, for any nonzero t.

Question 5: Consider the following linear system of equations

$$
\begin{aligned}
6 x_{1}+2 x_{2} & =8 \\
x_{1}+7 x_{2}-2 x_{3} & =6 \\
3 x_{1}-2 x_{2}+9 x_{3} & =10
\end{aligned}
$$

Find the matrix form of the Gauss-Seidel iterative method and use it to compute the second approximation $\mathbf{x}^{(\mathbf{2})}$ using the initial solution $\mathbf{x}^{(\mathbf{0})}=[0.5,0.5,0.5]^{T}$. Compute the error bound $\left\|\mathbf{x}-\mathbf{x}^{(5)}\right\|_{\infty}$.

To find the matrix form of the Gauss-Seidel iterative method, firstly we compute the GaussSeidel iteration matrix T_{G} and the vector $\mathbf{c}_{\mathbf{G}}$ as follows:

$$
T_{G}=-(D+L)^{-1} U=\left(\begin{array}{rrr}
0 & -1 / 3 & 0 \\
0 & 1 / 21 & 2 / 7 \\
0 & 23 / 189 & 4 / 63
\end{array}\right) \quad \text { and } \quad \mathbf{c}_{\mathbf{G}}=(D+L)^{-1} \mathbf{b}=\left(\begin{array}{l}
4 / 3 \\
2 / 3 \\
22 / 27
\end{array}\right)
$$

Thus the matrix form of Gauss-Seidel iterative method is

$$
\mathbf{x}^{(\mathbf{k}+\mathbf{1})}=\left(\begin{array}{rrr}
0 & -1 / 3 & 0 \\
0 & 1 / 21 & 2 / 7 \\
0 & 23 / 189 & 4 / 63
\end{array}\right) \mathbf{x}^{(\mathbf{k})}+\left(\begin{array}{l}
4 / 3 \\
2 / 3 \\
22 / 27
\end{array}\right), \quad k=0,1,2
$$

or

$$
\mathbf{x}^{(\mathbf{k}+\mathbf{1})}=\left(\begin{array}{rrr}
0 & -0.3333 & 0 \\
0 & 0.0476 & 0.2857 \\
0 & 0.1217 & 0.0635
\end{array}\right) \mathbf{x}^{(\mathbf{k})}+\left(\begin{array}{l}
1.3333 \\
0.6667 \\
0.8148
\end{array}\right), \quad k=0,1,2
$$

Now using above matrix form to compute the second approximation $\mathbf{x}^{(\mathbf{2})}$ using the initial solution $\mathbf{x}^{(\mathbf{0})}=[0.5,0.5,0.5]^{T}$ and $k=0$, we obtain

$$
\mathbf{x}^{(\mathbf{1})}=\left(\begin{array}{rrr}
0 & -0.3333 & 0 \\
0 & 0.0476 & 0.2857 \\
0 & 0.1217 & 0.0635
\end{array}\right)\left(\begin{array}{l}
0.5 \\
0.5 \\
0.5
\end{array}\right)+\left(\begin{array}{l}
1.3333 \\
0.6667 \\
0.8148
\end{array}\right)=\left(\begin{array}{l}
1.1667 \\
0.8333 \\
0.9074
\end{array}\right)
$$

and for $k=1$, gives

$$
\mathbf{x}^{(\mathbf{2})}=\left(\begin{array}{rrr}
0 & -0.3333 & 0 \\
0 & 0.0476 & 0.2857 \\
0 & 0.1217 & 0.0635
\end{array}\right)\left(\begin{array}{l}
1.1667 \\
0.8333 \\
0.9074
\end{array}\right)+\left(\begin{array}{l}
1.3333 \\
0.6667 \\
0.8148
\end{array}\right)=\left(\begin{array}{l}
1.0556 \\
0.9656 \\
0.9738
\end{array}\right)
$$

the required second approximation of the exact root $\mathbf{x}=[1,1,1]^{T}$.
Since the l_{∞} norm of the matrix T_{G} is

$$
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{1}{3}, \frac{7}{21}, \frac{35}{189}\right\}=\max \{0.3333,0.3333,0.1852\}=0.3333<1
$$

and

$$
\mathbf{x}^{(1)}-\mathbf{x}^{(0)}=\left(\begin{array}{l}
1.1667 \\
0.8333 \\
0.9074
\end{array}\right)-\left(\begin{array}{c}
0.5 \\
0.5 \\
0.5
\end{array}\right)=\left(\begin{array}{c}
0.6667 \\
0.3333 \\
0.4074
\end{array}\right)
$$

Thus using error bound formula,

$$
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{k})}\right\| \leq \frac{\left\|T_{G}\right\|^{k}}{1-\left\|T_{G}\right\|}\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\|
$$

and using $\left\|T_{G}\right\|=0.3333,\left\|\mathbf{x}^{(1)}-\mathbf{x}^{(\mathbf{0})}\right\|=0.6667, k=5$, we obtain

$$
\left\|\mathbf{x}-\mathbf{x}^{(\mathbf{5})}\right\| \leq \frac{(0.3333)^{5}}{(1-0.3333)}(0.6667)=0.0041
$$

the required error bound.

