SYLLABUS and EXERCISES

CHAPTER 16: PARTIAL DIFFERENTIATION

Section 16.1: Functions of Several Variables

Do the following problems from the book

1, 3, 5, 8, 9, 14, 21, 22, 23, 24, 37.

Section 16.2: Limits and Continuity

I- Do the following problems from the book

3, 5, 6, 9, 12, 14, 16, 19, 20, 25, 26, 28, 29, 37, 38, 42.

II- Find the following limits, if they exist:

$$(1) \lim_{(x,y)\to(1,2)} \frac{xy-2x-y+2}{x^2+y^2-2x-2y+5}$$
 (2) $\lim_{(x,y)\to(1,1)} \frac{x-y^4}{x^3-y^4}$ (3) $\lim_{(x,y)\to(0,0)} \frac{3xy}{5x^4+2y^4}$

(2)
$$\lim_{(x,y)\to(1,1)} \frac{x-y^4}{x^3-y^4}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{3xy}{5x^4+2y^4}$$

(4)
$$\lim_{(x,y)\to(0,0)} \frac{3x^3 - 2x^2y + 3y^2x - 2y^3}{x^2 + y^2}$$
 (5) $\lim_{(x,y)\to(0,0)} \frac{10xy}{5x^3 + 2y^3}$ (6) $\lim_{(x,y)\to(0,1)} \frac{x + (y-1)^3}{\sqrt{x^2 + (y-1)^2}}$

(5)
$$\lim_{(x,y)\to(0,0)} \frac{10xy}{5x^3+2y^3}$$

(6)
$$\lim_{(x,y)\to(0,1)} \frac{x+(y-1)^3}{\sqrt{x^2+(y-1)^2}}$$

(7)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz+zx}{x^2+y^2+z^2}$$

(8)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^3+y^6}$$

(7)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz+zx}{x^2+y^2+z^2}$$
 (8) $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^3+y^6}$ (9) $\lim_{(x,y,z)\to(0,0,0)} \frac{y^3+x^3sinz^3}{x^2+y^2+z^2}$

(10)
$$\lim_{(x,y)\to(2,1)} \frac{(y-1)(x-2)^2}{(y-1)^3+(x-2)^3}$$
 (11) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4+y^2}$ (12) $\lim_{(x,y,z)\to(0,0,0)} \frac{xy^2}{x^2+y^2+z^2}$

(11)
$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4+y^2}$$

(12)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy^2}{x^2+y^2+z^2}$$

(13)
$$\lim_{(x,y)\to(1,1)} \frac{3x^3 + xy^2 - 3xy - y^3}{x^2 - y^2}$$

(13)
$$\lim_{(x,y)\to(1,1)} \frac{3x^3 + xy^2 - 3xy - y^3}{x^2 - y^2}$$
 (14) $\lim_{(x,y,z)\to(0,0,0)} \begin{cases} \frac{x}{y^2} - \frac{x}{e^{y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$

III – Show that

(1)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}} = 0$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2} = 0$$

(3)
$$\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0$$
, If $f(x,y,z) = \begin{cases} \frac{3xyz}{x^2+y^2+z^2} & (x,y,z) \neq (0,0,0) \\ 0 & ((x,y,z) = (0,0,0)) \end{cases}$

III- Discuss the continuity of the following functions on their domain:

(1)
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(1) f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(2) f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}, \text{ at } (x,y) = (0,0)$$

(3)
$$f(x, y, z) = \begin{cases} \frac{x^3 + y^3 + z^3}{x^2 + y^2 + z^2} & (x, y, z) \neq (0,0,0) \\ 0 & (x, y, z) = (0,0,0) \end{cases}$$
, at $(x, y, z) = (0,0,0)$

$$(4)f(x,y,z) = \begin{cases} \frac{xz-y^2}{x^2+y^2+z^2} & (x,y,z) \neq (0,0,0) \\ 0 & ((x,y,z) = (0,0,0)) \end{cases}, \text{ at } (x,y,z) = (0,0,0)$$

(5)
$$f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(5) \ f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

$$(6) \ f(x,y,z) = \begin{cases} \frac{xzy^2}{x^2+y^2+z^2} & (x,y,z) \neq (0,0,0) \\ 0 & ((x,y,z) = (0,0,0)) \end{cases}$$

IV - Discuss the continuity of the following functions:

$$(1) h(x,y) = e^{x^2 + 5xy + y^2} (2) h(x,y) = \sin(\sqrt{y - 4x^2}) (3) f(x,y) = e^{xy} \sin^{-1}(x^2 + y^2)$$

(3)
$$h(x, y, z) = ln(36 - 4x^2 - y^2 - 9z^2)$$
 (4) $f(x, y, z) = \frac{xz}{\sqrt{x^2 + y^2 + z^2 - 1}}$

Section 16.3: Partial Derivatives

I- Do the following problems from the book

4, 6, 8, 12, 13, 16, 17, 21, 22, 27, 29, 32, 34, 36, 39, 42, 47.

II- Do the following problems

1. Using the definition, find f_x , f_y of the function $f(x,y) = 3x^2 - 2xy + y^2$

II. Let
$$f(x,y) = e^{x-y} \sin(x+y)$$
, show that $(f_x)^2 + (f_y)^2 = \frac{2(f(x,y))^2}{\sin^2(x+y)}$

Section 16.4: Increments and Differentials

Do the following problems from the book

- 2, 9, 11, 12, 16, 18, 20, 39, 41.
- 1. Use the differential to approximate the change in the function

$$w = f(x, y) = x^2 ln(z^2 + y^2)$$
, as (x, y, z) changes from (1, 2, 3) to (0.9, 1.9, 3.1).

2. Use the differential to approximate the change in the function

$$w = f(x, y) = yx^{\frac{2}{5}} + \sqrt{x - y}$$
. As (x, y) changes from (52, 16) to (35, 18).

3.
$$f(x, y, z) = \begin{cases} \frac{xy^2z}{x^4+y^4+z^4} & (x, y, z) \neq (0,0,0) \\ 0 & ((x, y, z) = (0,0,0)) \end{cases}$$

- (1) Show that $f_x(0,0,0)$, $f_y(0,0,0)$ and $f_z(0,0,0)$ exist.
- (2) Discuss the differentiability of f(x, y, z) at (0,0,0).

Section 16.5: Chain Rules

Do the following problems from the book

2, 4, 6, 10, 12, 14, 18, 19, 22, 33, 37, 38, 41, 42.

1. If $w = f(x, y, z) = x^2 + y^2 + z^2$, where $x = r\cos\theta$, $y = r\sin\theta$ and z = r. Use the differential to show that dw = 4rdr.

2. Let
$$z = f(x, y)$$
 be determined implicitly by $x^2 + z^2 + cos(xyz) - 4 = 0$. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$.

Then show that
$$2y \frac{\partial z}{\partial y} - x \frac{\partial z}{\partial x} = \frac{xyzsin(xyz)}{2z - xysin(xyz)}$$

Section 16.8: Extrema of Functions of Several Variables

Do the following problems from the book;

1, 9, 11, 15, 20, 21, 23, 24, 26, 29, 31, 32.

.....

Section 16.9: Lagrange Multipliers

Do the following problems from the book; 1, 2, 3, 11.

.....

Chapter 17: Multiple Integral

Section 17.1: Double Integral

Do the following problems from the book;

1 - 10, 13, 16, 18, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 37, 38, 39, 43, 44, 50.

1. Sketch the region bounded by the graphs of the given equations, and then evaluates the given

integral
$$y = x, y = \sqrt{x}, x = 0$$
; $\iint_R \sin y^2 dA$

2. Evaluate the double integral $\int_0^2 \int_{y/2}^1 e^{x^2} dx dy$

Section 17.2: Area and Volume

Do the following problems from the book;

2, 4, 6, 7, 11, 14, 18, 22, 24, 27, 28, 30, 31, 32.

1. Sketch the region bounded by the graphs of the equation y = sinx,

 $y = cosx, x = 0, x = \frac{\pi}{4}$. Then use the double integral to find its area.

Section 17.3: Double Integral by Polar Coordinate

Do the following problems from the book;

1 - 12, 13, 15, 17, 18, 19, 21, 23, 24.

1. Use polar coordinate to evaluate the double integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} (x^2 + y^2)^{3/2} dy dx$

Section 17.5: Triple Integral

Do the following problems from the book;

2, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 23, 26, 28.

Section 17.7: Cylindrical Coordinates

2, 6, 7, 13 18, 20, 23,30(a), 32(just find the volume of the solid), 39, 40.

Section 17.8: Spherical Coordinates

2, 3, 11, 14, 25, 28, 32(just find the volume of the solid), 35,36, 39, 40.

CHAPTER 11: INFINITE SERIES

Section 11.1: Sequences

Do the following problems from the book;

3, 5, 7, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42.

.....

Section 11.2: Convergent or Divergent Series

Do the following problems from the book;

2, 4, 5, 6, 8, 10, 14, 15, 18, 20, 25, 28, 30, 34, 37, 38, 39, 40, 42, 43, 45, 46, 50, 57, 58.

Section 11.3: Positive term Series

Do the following problems from the book;

2 - 11, 14, 15, 16, 18, 20, 22, 23, 24, 25, 26, 30, 31, 33, 34, 35, 39, 40, 42, 43, 45, 46, 57, 58.

Section 11.4: The Ratio and Root Test

Do the following problems from the book;

2, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38.

Section 11.5: Alternating Series and Absolute Convergence

Do the following problems from the book;

2 - 7, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 27, 28, 29, 32, 33, 34, 35, 38, 40, 41, 43, 44, 45, 46.

Section 11.6: Power Series

Do the following problems from the book;

5, 6, 7, 8, 14, 15, 19, 23, 25, 27, 30, 35, 36, 41, 42, 44, 45, 46.

Section 11.7: Power Series Representation of Functions

Do the following problems from the book;

2, 4, 6, 7, 10, 13, 14, 16, 19, 22, 25, 29, 30, 32, 33, 34, 37.

Section 11.8: Maclaurin and Taylor Series

Do the following problems from the book;

2, 4, 8, 10, 13, 15, 18, 19, 21, 26, 29, 32, 34, 36, 38, 39, 42.