

Question	I	II	III	IV	Total
Mark					

Question I: (0.5×8=4points)

Question	1	2	3	4	5	6	7	8
Answer	a	b	a	b	c	c	c	a

Choose the correct answer, then fill in the table above:

(1) If R is a symmetric relation on a set A , then the inverse relation, R^{-1} , is also symmetric

(a) True
(b) False

(2) Let $R = \{(x, y) : y = 2x + 1\}$, and $S = \{(x, y) : y = x^2\}$. Where R and S are defined on \mathbb{Z} , then $R \circ S$ is defined as

(a) $\{(x, y) : y = (2x + 1)^2\}$.
 (b) $\{(x, y) : y = 2x^2 + 1\}$.
 (c) $\{(x, y) : y = (2x + 1)x^2\}$.
 (d) None of the previous.

(3) In the set of positive integers with division relation $(\mathbb{Z}^+, |)$, 4 and 8 are:

(a) comparable
(b) incomparable

(4) If R_1 and R_2 are relations on a set A represented by the matrices

$$M_{R_1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}, \text{ then } M_{R_1 \cap R_2} =$$

(a) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

(b) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

(c) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$

(d) None of the previous

(5) For the equivalence relation on \mathbb{Z} defined by $aRb \leftrightarrow a \equiv b \pmod{3}$, \mathbb{Z} can be partitioned

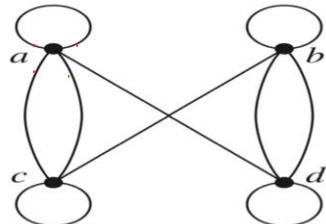
- (a) $\{[0],[1],[3]\}$.
- (b) $\{[-1],[0],[1],[2]\}$.
- (c) $\{[-1],[0],[1]\}$.
- (d) None of the previous.

(6) The number of edges of the $20 - \text{regular}$ graph with 10 vertices graph is:

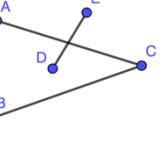
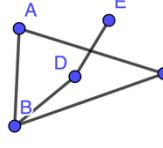
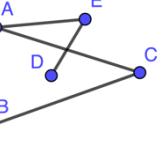
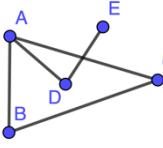
- (a) 180.
- (b) 90.
- (c) 100.
- (d) None of the previous.

(7) For the graph below, the degree of the vertex a is

- (a) 4.
- (b) 3.
- (c) 5.
- (d) None of the previous.



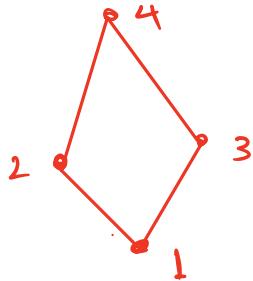
(8) Which of the following graphs is a **disconnected** graph?

- (a) 
- (b) 
- (c) 
- (d) 

Question II: (1.5+5.5=7points)

A. Draw the Hasse diagram of the poset on $A = \{1, 2, 3, 4\}$, given by:

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (3,4), (4,4)\}.$$



B. Let R be a relation on $A = \{1, 2, 3, 4\}$, defined by

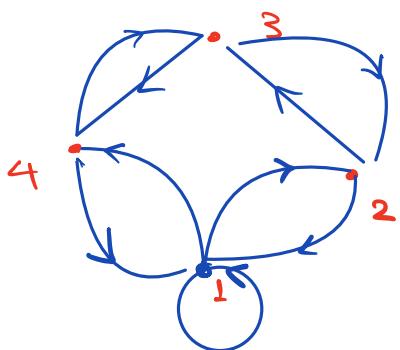
$$aRb \leftrightarrow a + b \text{ is prime.}$$

Then answer the following:

(i) List all ordered pairs of R .

$$\{ (1,1), (1,2), (2,1), (3,2), (2,3), (4,1), (1,4), (4,3), (3,4) \}$$

(ii) Draw a directed graph (digraph) representing the relation R .



(iii) Is the relation reflexive? Justify your answer.

No, because $(4,4) \notin R$

(iv) Is the relation antisymmetric? Justify your answer.

No, because $(1,2), (2,1) \in R$
but $1 \neq 2$

Question III: (4.5+1.5+1=7points)

Let R be a relation defined on the set of integers \mathbb{Z} by $R = \{(a, b) : a^2 = b^2\}$. Then answer the following:

(i) Prove that R is an equivalence relation on \mathbb{Z} .

1) R is reflexive as $\forall a \in \mathbb{Z}, a^2 = a^2$
 $\Rightarrow (a, a) \in R$

2) R is symmetric :- $\forall a, b \in \mathbb{Z}$
 $a R b \Leftrightarrow a^2 = b^2 \Leftrightarrow b^2 = a^2 \Leftrightarrow b R a$

3) R is transitive

$\forall a, b, c \in \mathbb{Z}$
let $a R b \wedge b R c \Rightarrow a^2 = b^2 \wedge b^2 = c^2$
 $\Rightarrow a^2 = c^2 \Rightarrow a R c$.

From ①, ② and ③ R is an equivalence relation.

(ii) Find the equivalence classes $[x]$ and $[5]$.

$$[x] = \{y \in \mathbb{Z} : x R y\} = \{y \in \mathbb{Z} : x^2 = y^2\} = \{x\}$$

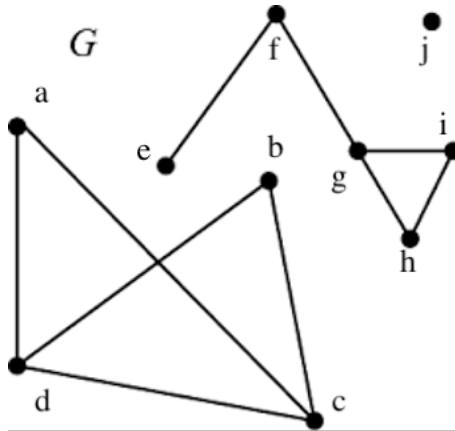
$$[5] = \{5, -5\}$$

(iii) Is the relation a poset? Justify your answer.

No, because it is not antisymmetric
 $1 R -1$ and $-1 R 1$ but $1 \neq -1$.

Question IV: ($2.5+3+1.5=7$ points)

A. Answer the following questions about the graph G :



(i) Is the graph G connected? Justify your answer.

No, we can't find path between "j" and "a".

(ii) How many connected components are in the graph G .

3

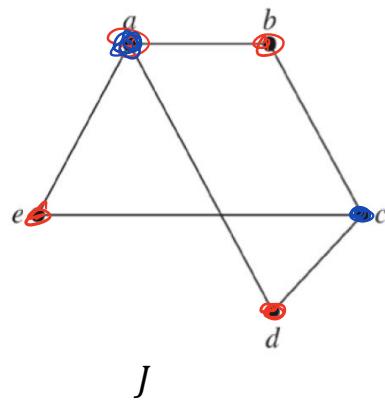
(iii) Find a path from i to e of length 4.

$i-h-g-f-e$

(iv) Does the graph have an isolated vertex? If so, name it.

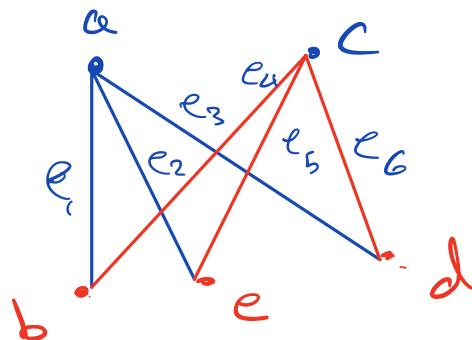
Yes, The vertex j .

B. Answer the following questions about the graph J below



(i) Is the graph J bipartite? Justify your answer.

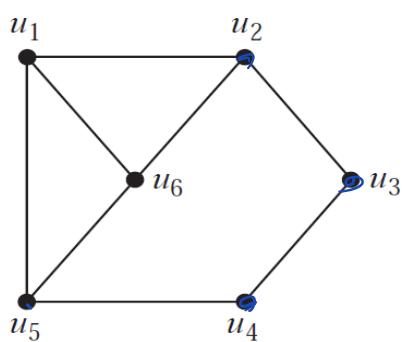
Yes,



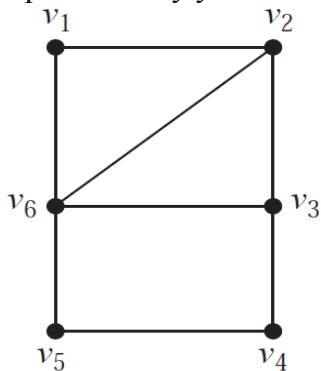
(ii) Represent the graph J in an adjacency matrix.

$$\begin{bmatrix}
 & e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \\
 e_1 & 1 & 1 & 1 & 0 & 0 & 0 \\
 e_2 & 1 & 0 & 0 & 1 & 0 & 0 \\
 e_3 & 0 & 0 & 0 & 1 & 1 & 1 \\
 e_4 & 0 & 0 & 1 & 0 & 0 & 1 \\
 e_5 & 0 & 1 & 0 & 0 & 1 & 0
 \end{bmatrix}$$

C. Are the graphs H and I below isomorphic? Justify your answer.



H



I

No, I has a vertex of degree 4 while H doesn't.

H has 4 vertixes of degree 3 while I doesn't.

Good Luck 😊