

Questions	Q1	Q2	Q3	Q4	Total
Marks					

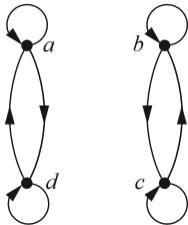
Question 1: (8 points)

Question Number	1	2	3	4	5	6	7	8
Answer	a	b	c	b	d	b	c	b

Choose the correct answer, then fill it in the above table:

- 1) In the poset $(P(\mathbb{N}), \leq)$, the sets $\{1,2\}$ and $\{1,2,3\}$ are
 - (a) Comparable.
 - (b) Incomparable.
- 2) The relation $\{(a, b) | a + b \text{ is odd}\}$ on \mathbb{Z} is a partial ordering.
 - (a) True.
 - (b) False.
- 3) Let $R = \{(a, b) | a \equiv b \pmod{3}\}$. Then
 - (a) $[3] = [5]$
 - (b) $[1] = [3]$
 - (c) $[2] = [-1]$
 - (d) None.
- 4) If $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ is a relation on $\{1,2,3,4\}$ then the partition formed by this partition is:
 - (a) $\{\{1,2\}, \{3,4\}\}$
 - (b) $\{\{1,2\}, \{3\}, \{4\}\}$
 - (c) $\{\{1\}, \{2\}, \{3,4\}\}$
 - (d) None.

5) The directed graph below represents a relation R that is:



- (a) Reflexive, symmetric, antisymmetric, and transitive.
- (b) Reflexive, not symmetric, antisymmetric, and not transitive.
- (c) Reflexive, not symmetric, not antisymmetric, but transitive.
- (d) Reflexive, symmetric, not antisymmetric, and transitive.**

6) The graph $K_{3,3}$ is considered

- (a) 2-regular.
- (b) 3-regular.**
- (c) 9-regular.
- (d) None.

$$(b, a) \mid a \leq b$$

7) If $R = \{(a, b) | a \leq b\}$, is a relation on \mathbb{R} , then R^{-1} equal

- (a) $\{(a, b) | a < b\}$.
- (b) $\{(a, b) | a > b\}$
- (c) $\{(a, b) | a \geq b\}$**
- (d) None

8) If $R = \{(x, y) | y = \sqrt{x^2 + 1}\}$ and $S = \{(x, y) | y = \sqrt{x}\}$, where R and S defined on \mathbb{R}^+ , then $R \circ S$ is defined as

- (a) $\{(x, y) | y = \sqrt{\sqrt{x^2 + 1}}\}$.
- (b) $\{(x, y) | y = \sqrt{x + 1}\}$**
- (c) $\{(x, y) | y = \sqrt{\sqrt{x} + 1}\}$
- (d) None.

Question 2: (4+5 points)

(A) Let R and S be relations on $\{1,2,3\}$ and let $M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $M_S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ be the matrices of R and S respectively.

(1) List the ordered pairs of R and S .

$$R = \{(1,1), (1,3), (2,1), (2,2), (3,3)\}$$

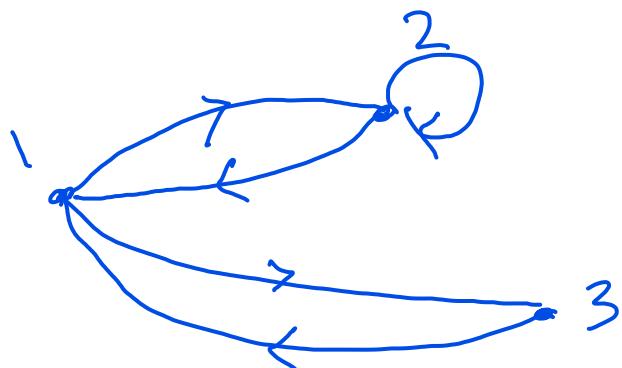
$$S = \{(1,2), (1,3), (2,1), (2,2), (3,1)\}$$

(2) Find $M_{R \cap S}$ = $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

(3) Find $M_{R \circ S}$ = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

(4) Find $M_{\bar{R}}$ = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

(5) Represent S using directed graph.



(B) Let R be the relation defined on \mathbb{Z} by

$$aRb \Leftrightarrow 3a \equiv b \pmod{2}$$

(1) Show that R is an equivalence relation.

R is reflexive: as $2|3a-a$ i.e. $2|2a \therefore aRa \forall a \in \mathbb{Z}$

R is symmetric: $\exists aRb \rightarrow 2|3a-b$
 $\rightarrow 3a-b=2k$
 for some $k \in \mathbb{Z}$

$$\begin{aligned} 3b-a &= 3(3a-2k)-a \\ &= 8a-6k=2(4a-3k) \\ \therefore 2|3b-a &\therefore bRa \end{aligned}$$

R is transitive: $\exists aRb \wedge bRc$
 $\rightarrow 2|3a-b \wedge 2|3b-c \rightarrow 3a-b=2k, 3b-c=2L$
 $\therefore 3a-c = b+2k+2L-3b = 2k+2L-2b$
 $= 2(K+L-b)$

$\therefore 2|3a-c$ and aRc .

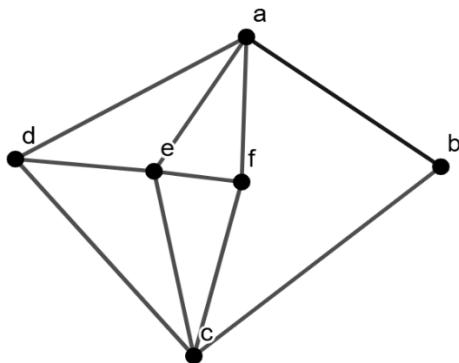
$$\begin{aligned} [1] &= \{a \mid 1Ra\} = \{a \mid 2|3-a\} = \{a \mid 3-a \text{ is even}\} \\ &= \{-3, -1, 1, 3, 5\} \\ [2] &= \{a \mid 2Ra\} = \{a \mid 2|6-a\} = \{-\dots, -2, 0, 2, 4, \dots\} \end{aligned}$$

(3) Is $[4] \cap [3] = \emptyset$? Justify your answer

Yes, as $3R4$

Question 3: (4+2 points)

(A) Consider the graph G below



(1) Find $\deg(a)$ and $\deg(d)$.

$$\deg(a) = 4$$

$$\deg(d) = 3$$

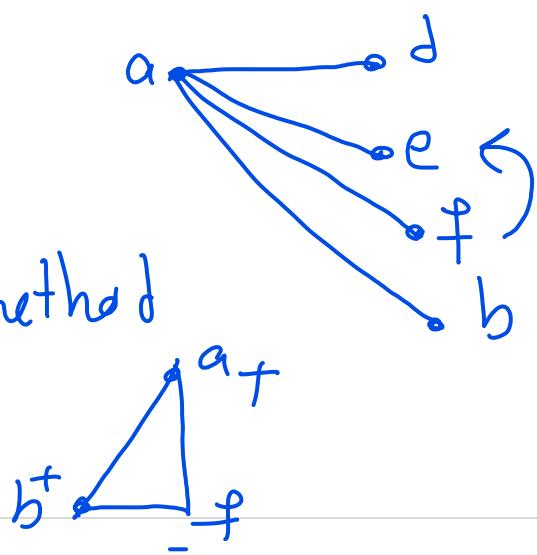
(2) Find $N(A)$ where $A = \{a, d\}$.

$$N(A) = \{a, b, c, d, e, f\}$$

(3) Is the graph bipartite? Justify your answer.

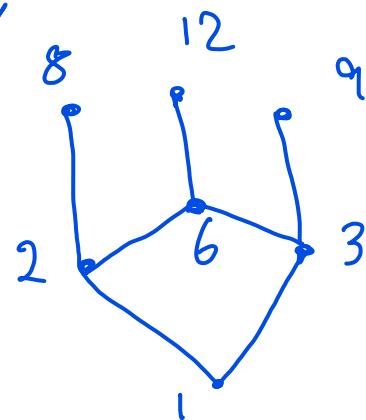
No,

or by any other method



(B) Let $A = \{1, 2, 3, 6, 8, 9, 12\}$. Draw the Hasse diagram representing the poset $\{(a, b) | a \text{ divides } b\}$ on A . Is the poset a totally ordered set? Justify your answer.

The poset isn't totally ordered set because $2 \nmid 3$ and $3 \nmid 2$
(or not all the points are on the same line)



Question 4: (2 points)

For $K_{n,3}$ where $n > 3$, find the following:

$$(1) |V| = n+3$$

(2) Degree sequence of vertices in $K_{n,3}$

$$n, n, n, \underbrace{3, 3, \dots, 3}_{n\text{-times}}$$

$$(3) |E| = 3n$$

$$(4) |E| \text{ in } \overline{K_{n,3}} \\ |E| = |E_{K_{3+n}}| - |E_{K_{n,3}}| = \frac{(n+3)(n+2)}{2} - 3n$$

OR: $|E| = |E_{K_3}| + |E_{K_n}| = 3 + \frac{n(n-1)}{2}$ دعواتي لكن بال توفيق