

First Midterm Exam
Academic Year 1445-1446 Hijri- Second Semester

معلومات الامتحان Exam Information		
Course name	Discrete Mathematics	اسم المقرر
Course Code	Math 151	رمز المقرر
Exam Date	2025-02-19	تاريخ الامتحان
Exam Time	12: 00 PM	وقت الامتحان
Exam Duration	2 hours	ساعتان
Classroom No.		رقم قاعة الاختبار
Instructor Name	د. جواهر المفرج	اسم استاذ المقرر

معلومات الطالب Student Information		
Student's Name		اسم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Serial Number		الرقم التسلسلي

General Instructions:

- Your Exam consists of 6 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
-

٦ صفحات الامتحان (باستثناء هذه الورقة)
يجب إبقاء الهواتف وال ساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بـاستاذ المادة

This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O.1.1	Q1-Q2	5.5+8	25
2	C.L.O 2.1	Q3-Q4-Q5	5+3.5+3	
3	.			
4				
5				
6				
7				
8				

Questions	Q1	Q2	Q3	Q4	Q5	Total
Marks						

Question 1: (8 points)

Question Number	1	2	3	4	5	6	7	8
Answer								

Choose the correct answer, then fill it in the above table:

- 1) The truth value of “ $\forall x \in \mathbb{R}$, if $x^2 \geq 1$, then $x > 0$ ” is:
 - (a) True.
 - (b) False.
- 2) The proposition $\neg(p \vee q) \leftrightarrow (\neg p \wedge \neg q)$ for any propositions p and q is a:
 - (a) Tautology.
 - (b) Contradiction.
 - (c) Contingency
- 3) The proposition $(p \rightarrow q) \wedge (p \wedge \neg q)$ is logically equivalent to:
 - (a) T
 - (b) F
 - (c) p
 - (d) q
- 4) The statement $p \rightarrow q$ is equivalent to:
 - (a) $\neg p \rightarrow q$
 - (b) $p \rightarrow \neg q$
 - (c) $\neg q \rightarrow \neg p$
 - (d) $\neg q \rightarrow p$

5) The negation of the statement $[\exists x(x^2 > x)]$ and $[\forall x(x^2 \neq 1)]$ is

- (a) $[\forall x(x^2 \geq x)]$ or $[\exists x(x^2 = 1)]$
- (b) $[\exists x(x^2 > x)]$ or $[\forall x(x^2 = 1)]$
- (c) $[\forall x(x^2 \leq x)]$ or $[\exists x(x^2 = 1)]$
- (d) $[\exists x(x^2 \leq x)]$ or $[\forall x(x^2 = 1)]$

6) The statement " $x - 3 < 0$ " is true when the domain is the set of:

- (a) All positive real numbers.
- (b) All negative real numbers.
- (c) All real numbers.
- (d) All real numbers except $x = 3$.

7) Let $P(x, y)$ be the statement: " $y - 1 = x$ ". Then

- (a) $P(2,3)$ is false.
- (b) $P(3,2)$ is true.
- (c) $P(5,4)$ is false
- (d) $P(4,5)$ is false

8) Let $p(x)$ be the statement " $x^2 > 11$ " and the universe of discourse consists of the positive integers not exceeding 4, then the truth value of $\exists xP(x)$ is equal to

- (a) $(P(1) \vee P(2)) \wedge (P(3) \wedge P(4))$.
- (b) $P(1) \vee P(2) \vee P(3) \vee P(4)$.
- (c) $P(1) \wedge P(2) \wedge P(3) \wedge P(4)$.
- (d) $(P(1) \vee P(2)) \vee (P(3) \wedge P(4))$.

Question 2: (3+2.5 points)

(A) Consider the proposition: "If $2 + 6 = 3$ then $\sqrt{2}$ is irrational ". Find the following:

(1) The truth value of the proposition.

(2) The convers and its truth value.

(3) The inverse and its truth value.

(4) The contraposition and its truth value.

(B) Without using truth tables show that $(p \wedge q) \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r)$.

Question 3: (2.5+2.5 points)

(A) **By contradiction:** Prove that if x is rational and y is irrational then $x + y$ is irrational.

(B) Prove that for all integer n , if $n + 1$ is even, then n^2 is odd.

Question 4: (2.5+1 points)

(A) Prove that for all integer n , if $n^2 + n$ is odd, then n is odd.

(B) Show that that statement “For every positive integer n , $n^2 + 1 > 2n$ ” is false.

Question 5: (3 points)

The sequence $\{a_n\}$ is defined recursively by

$$a_1 = 1, a_2 = 4, a_n = 2a_{n-1} - a_{n-2}, n \geq 3$$

Use the Principal of Strong Mathematical induction to prove that $a_n = 3n - 2 \forall n \geq 1$.