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Total Q5 Q4 Q3 Q2 Q1 Questions 

      Marks 

 

(8 points) Question 1: 

8 7 6 5 4 3 2 1 
Question 

Number 

        Answer 

 

Choose the correct answer, then fill it in the above table: 

1) The truth value of “∀𝑥 ∈ ℝ, if 𝑥2 ≥ 1, then 𝑥 > 0” is: 

(a) True. 

(b) False. 

 

2) The proposition ¬(𝑝 ∨ 𝑞) ⟷ (¬𝑝 ∧ ¬𝑞) for any prpositions 𝑝 and 𝑞 is a: 

(a) Tautology. 

(b) Contradiction. 

(c) Contingency 

 

3) The proposition (𝑝 → 𝑞) ∧ (𝑝 ∧ ¬𝑞) is logically equivalent to: 

(a) T                          (b) F                       (c) 𝑝                             (d) 𝑞 

 

4) The statement 𝑝 → 𝑞 is equivalent to: 

(a) ¬𝑝 → 𝑞 

(b) 𝑝 → ¬𝑞 

(c) ¬𝑞 → ¬𝑝 

(d) ¬𝑞 → 𝑝 
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5) The negation of the statement [∃𝑥(𝑥2 > 𝑥)] and [∀𝑥(𝑥2 ≠ 1)] is  

(a) [∀𝑥(𝑥2 ≥ 𝑥)] or [∃𝑥(𝑥2 = 1)] 

(b) [∃𝑥(𝑥2 > 𝑥)] or [∀𝑥(𝑥2 = 1)]  

(c) [∀𝑥(𝑥2 ≤ 𝑥)] or [∃𝑥(𝑥2 = 1)] 

(d) [∃𝑥(𝑥2 ≤ 𝑥)] or [∀𝑥(𝑥2 = 1)]  

 

 

6) The statement “𝑥 − 3 < 0” is true when the domain is the set of: 

(a) All positive real numbers. 

(b) All negative real numbers. 

(c) All real numbers. 

(d) All real numbers except 𝑥 = 3. 

 

 

7) Let 𝑃(𝑥, 𝑦) be the statement: "𝑦 − 1 = 𝑥".  Then 

(a) 𝑃(2,3) is false. 

(b) 𝑃(3,2) is true. 

(c) 𝑃(5,4) is false 

(d) 𝑃(4,5) is false 

 

8) Let 𝑝(𝑥) be the statement "𝑥2 > 11" and the universe of discourse consists of the 

positive integers not exceeding 4, then the truth value of ∃𝑥𝑃(𝑥) is equal to 

(a) (𝑃(1) ∨ 𝑃(2)) ∧ (𝑃(3) ∧ 𝑃(4)). 

(b) 𝑃(1) ∨ 𝑃(2) ∨ 𝑃(3) ∨ 𝑃(4). 

(c) 𝑃(1) ∧ 𝑃(2) ∧ 𝑃(3) ∧ 𝑃(4). 

(d) (𝑃(1) ∨ 𝑃(2)) ∨ (𝑃(3) ∧ 𝑃(4)). 
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Question 2: (3+2.5 points) 

(A) Consider the proposition: "If 2 + 6 = 3 then √2 𝑖𝑠 irrational ". Find the following: 

 

(1) The truth value of the proposition. 

 

(2) The convers and its truth value. 

 

 

(3) The inverse and its truth value. 

 

 

(4) The contraposition and its truth value. 

 

 

(B) Without using truth tables show that  (𝑝 ∧ 𝑞) → 𝑟 ≡ (𝑝 → 𝑟) ∨ (𝑞 → 𝑟). 
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Question 3: (2.5+2.5 points) 

(A) By contradiction: Prove that if 𝑥 is rational and 𝑦 is irrational then 𝑥 + 𝑦 is 

irrational. 

 

 

 

 

 

 

 

 

 

 

 

 

(B) Prove that for all integer 𝑛, if 𝑛 + 1 is even, then 𝑛2 is odd. 
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Question 4: (2.5+1 points)  

(A) Prove that for all integer 𝑛, if 𝑛2 + 𝑛 is odd, then 𝑛 is odd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) Show that that statement “For every positive integer 𝑛, 𝑛2 + 1 > 2𝑛" is false.  
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Question 5: (3 points)  

The sequence {𝑎𝑛} is defined recursively by 

𝑎1 = 1, 𝑎2 = 4, 𝑎𝑛 = 2𝑎𝑛−1 − 𝑎𝑛−2, 𝑛 ≥ 3  

Use the Principal of Strong Mathematical induction to prove that 𝑎𝑛 = 3𝑛 − 2 ∀𝑛 ≥ 1.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 دعواتي لكن بالتوفيق 


