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Question I: (8points) 

 

 

Choose the correct answer, then fill in the table above: 
 

(1) If  𝒑 → 𝒒 is false, then ¬𝒑 ∨ 𝒒 is 

      (a) True. 

      (b) False. 

___________________________________________________________________________________________ 

 

            (2)  The proposition “ 𝒙𝟐 ≤ 𝒙 𝒘𝒉𝒆𝒏𝒆𝒗𝒆𝒓 𝟎 ≤ 𝒙 ≤ 𝟏" is equivalent to: 

(a) 𝒙𝟐 ≤ 𝒙 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝟎 ≤ 𝒙 ≤ 𝟏. 

(b) 𝒙𝟐 ≤ 𝒙  𝒊𝒇 𝒂𝒏𝒅 𝒐𝒏𝒍𝒚 𝒊𝒇  𝟎 ≤ 𝒙 ≤ 𝟏. 

(c) If  𝟎 ≤ 𝒙 ≤ 𝟏 then  𝒙𝟐 ≤ 𝒙 . 

(d) None of the previous. 

___________________________________________________________________________________________ 

(3) The proposition  ¬ ∃𝒙: (𝒙𝟑 = 𝟏 ∧ 𝟐𝒙 = 𝟏) is equivalent to: 

(a)  ∃𝒙: (𝒙𝟑 ≠ 𝟏 ∨ 𝟐𝒙 ≠ 𝟏).  

(b) ∀𝒙: (𝒙𝟑 ≠ 𝟏 ∧ 𝟐𝒙 ≠ 𝟏).     

(c) ∀𝒙: (𝒙𝟑 ≠ 𝟏 ∨ 𝟐𝒙 ≠ 𝟏). 

(d) None of the previous. 

 

____________________________________________________________________________________ 

 

(4) The proposition  "¬[𝒑 ∨ ¬𝒑]  → 𝒒" is a  

 

(a) Tautology.  

(b) Contradiction. 

(c) Contingency.        
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(5) The truth value of the statement ∃! 𝒙 ∈ ℝ 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 𝒙𝟐 − 𝟓 = 𝟎 is: 

(a) True. 

(b) False. 

________________________________________________________________________________ 

 

(6) The inverse of the proposition  𝒊𝒇 𝒙 + 𝒚 = 𝟐 𝒕𝒉𝒆𝒏 𝟐𝒙 + 𝟐𝒚 > 𝟐” is: 

 

(a) if  𝒙 + 𝒚 ≠ 𝟐 𝒕𝒉𝒆𝒏 𝟐𝒙 + 𝟐𝒚 ≤ 𝟐. 

(b) if   𝟐𝒙 + 𝟐𝒚 > 𝟐 𝒕𝒉𝒆𝒏 𝒙 + 𝒚 = 𝟐. 

(c) if 𝟐𝒙 + 𝟐𝒚 ≤ 𝟐 𝒕𝒉𝒆𝒏  𝒙 + 𝒚 ≠ 𝟐. 

(d) None of the previous.       

___________________________________________________________________________________ 

 

(7) If the domain of the propositional function 𝑃(𝑥) consists of the integers 1, 2, 3 𝑎𝑛𝑑 4, then the 

following is equivalent to the statement ¬∀𝒙𝑷(𝒙): 

       

  (a) ¬𝑃(1) ∧ ¬𝑃(2) ∧ ¬𝑃(3) ∧ ¬𝑃(4). 

  (b) ¬𝑃(1) ∨ ¬𝑃(2) ∨ ¬𝑃(3) ∨ ¬𝑃(4). 

  (c) P(1) ∨ 𝑃(2) ∨ 𝑃(3) ∨ 𝑃(4). 

  (d) None of the previous.   

__________________________________________________________________________________ 

 

(8) Let 𝑃(𝑥, 𝑦)  be the statement " 𝒚 − 𝟐𝒙 𝒊𝒔  𝒐𝒅𝒅 " then the following is true: 

 

(a) 𝑃(1,5). 

(b) 𝑃(1,2).   

(c) 𝑃(3,2). 

(d) None of the previous. 
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Question II: (2+2+2=6 points) 

A. Without using truth tables prove the following: 
 

¬𝒑 → (¬𝐩 ∧ 𝐪) ≡ ¬𝒑 → 𝒒. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. Prove that: 𝟐𝒏 + 𝟏 ≥  𝒏𝟐, for all nonnegative integers 𝑛 less than 4. 
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C.  Prove by contradiction: "𝐼𝑓 𝑚 ≠ 0 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑛𝑑 𝑛 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡ℎ𝑒𝑛 𝑚𝑛 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙".  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question III: (1+5=6 points) 

A. Prove that the statement "𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑛 ∈ ℤ , 𝒏𝟐 > 𝟐𝒏"  is false. 
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B. For every integer 𝑛, prove that: “ 𝒏 is even if and only if  𝟑𝒏𝟐  + 𝟓 is odd”. 
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Question IV: (5 points) 

 

 Let {𝑎𝑛} be a sequence defined inductively as: 

𝑎0 = 0, 𝑎1 = 1,   𝑎𝑛 = 3𝑎𝑛−1 − 2𝑎𝑛−2  ,   ∀ 𝑛 ≥ 2. 
 

 Using Strong Induction prove that: 

𝒂𝒏 = 𝟐𝒏 − 𝟏,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝑜𝑛𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛. 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Good Luck       


