

First Midterm Exam
Academic Year 1445 Hijri- Second Semester

معلومات الامتحان		
Course name	Discrete Mathematics	اسم المقرر
Course Code	151 ريض	رمز المقرر
Exam Date	2024-03-06	تاريخ الامتحان
Exam Time	10: 00 AM	وقت الامتحان
Exam Duration	2 hours	مدة الامتحان
Classroom No.		قاعة الامتحان
Instructor Name		اسم استاذ المقرر

معلومات الطالب

Student's Name		اسم الطالب
ID number		رقم الجامعي
Section No.		رقم الشعبة
Serial Number		رقم التسلسلي

General Instructions:

- Your Exam consists of 6 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- Calculators are not allowed.

• عدد صفحات الامتحان 6 صفحة. (بإثناء هذه الورقة) •
 يجب إبقاء الهواتف وال ساعات الذكية خارج قاعة الامتحان. •
 الآلة الحاسبة ممنوعة. •

هذا الجزء خاص بأستاذ المادة

This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O 1.1	I		
2	C.L.O 2.1	II+ III+IV		
3				
4				
5				
6				
7				
8				

Question	I	II	III	IV	Total
Mark					

Question I: (8points)

Question	1	2	3	4	5	6	7	8
Answer								

Choose the correct answer, then fill in the table above:

(1) If $p \rightarrow q$ is false, then $\neg p \vee q$ is

- (a) True.
- (b) False.

(2) The proposition " $x^2 \leq x$ whenever $0 \leq x \leq 1$ " is equivalent to:

- (a) $x^2 \leq x$ implies $0 \leq x \leq 1$.
- (b) $x^2 \leq x$ if and only if $0 \leq x \leq 1$.
- (c) If $0 \leq x \leq 1$ then $x^2 \leq x$.
- (d) None of the previous.

(3) The proposition $\neg \exists x: (x^3 = 1 \wedge 2x = 1)$ is equivalent to:

- (a) $\exists x: (x^3 \neq 1 \vee 2x \neq 1)$.
- (b) $\forall x: (x^3 \neq 1 \wedge 2x \neq 1)$.
- (c) $\forall x: (x^3 \neq 1 \vee 2x \neq 1)$.
- (d) None of the previous.

(4) The proposition " $\neg[p \vee \neg p] \rightarrow q$ " is a

- (a) Tautology.
- (b) Contradiction.
- (c) Contingency.

(5) The truth value of the statement $\exists! x \in \mathbb{R}$ such that $x^2 - 5 = 0$ is:

- (a) True.
- (b) False.

(6) The inverse of the proposition "if $x + y = 2$ then $2x + 2y > 2$ " is:

- (a) if $x + y \neq 2$ then $2x + 2y \leq 2$.
- (b) if $2x + 2y > 2$ then $x + y = 2$.
- (c) if $2x + 2y \leq 2$ then $x + y \neq 2$.
- (d) None of the previous.

(7) If the domain of the propositional function $P(x)$ consists of the integers 1, 2, 3 and 4, then the following is equivalent to the statement $\neg \forall x P(x)$:

- (a) $\neg P(1) \wedge \neg P(2) \wedge \neg P(3) \wedge \neg P(4)$.
- (b) $\neg P(1) \vee \neg P(2) \vee \neg P(3) \vee \neg P(4)$.
- (c) $P(1) \vee P(2) \vee P(3) \vee P(4)$.
- (d) None of the previous.

(8) Let $P(x, y)$ be the statement " $y - 2x$ is odd" then the following is true:

- (a) $P(1,5)$.
- (b) $P(1,2)$.
- (c) $P(3,2)$.
- (d) None of the previous.

Question II: (2+2+2=6 points)

A. Without using truth tables prove the following:

$$\neg p \rightarrow (\neg p \wedge q) \equiv \neg p \rightarrow q.$$

B. Prove that: $2^n + 1 \geq n^2$, for all nonnegative integers n less than 4.

C. Prove by **contradiction**: "If $m \neq 0$ is rational and n is irrational then mn is irrational".

Question III: (1+5=6 points)

A. Prove that the statement "for every $n \in \mathbb{Z}$, $n^2 > 2n$ " is **false**.

B. For every integer n , prove that: “ n is even if and only if $3n^2 + 5$ is odd”.

Question IV: (5 points)

Let $\{a_n\}$ be a sequence defined inductively as:

$$a_0 = 0, \quad a_1 = 1, \quad a_n = 3a_{n-1} - 2a_{n-2}, \quad \forall n \geq 2.$$

Using **Strong Induction** prove that:

$$a_n = 2^n - 1, \quad \text{for all nonnegative integers } n.$$

Good Luck 😊